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ABSTRACT

Analyzing multiple networks at once is a common yet dif-
ficult task in many domains. Using adjacency matrices for
this purpose, however, can be effective because of its superior
ability to accommodate dense networks in a small area. We
evaluate various representations and juxtaposition designs for
visualizing adjacency matrices through a series of controlled
experiments. We investigate the effects of using square matri-
ces and triangular matrices on the speed and accuracy of per-
forming graphical-perception tasks. Based on human sym-
metric perception, we propose two alternative juxtaposition
designs to the conventional side-by-side juxtaposition, and
study how users perform visual search and comparison tasks
regarding different juxtaposition types. Our results show that
the matrix representations have similar performance, and the
matrix juxtaposition types perform differently. With the de-
sign guidelines derived from our studies, we present a com-
pact visualization termed TileMatrix for juxtaposing a large
number of matrices, and demonstrate its effectiveness in ana-
lyzing multi-faceted, time-varying networks using real-world
data.
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INTRODUCTION

A network is an abstract data type that represents entities as
nodes and their relationships as edges. Examples include
social networks, computer networks, biological networks,
and organizational networks. Network visualization has be-
come an important research topic aiming to gain an effec-
tive overview of complex relational data [4, 8, 14, 15, 16].
Introduced by Jacques Bertin [6], adjacency matrices offer
an interesting alternative to conventional node-link diagrams,
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which can suffer from visual cluttering due to node overlap-
ping and edge crossing. An adjacency matrix shows how
nodes are connected together through the intersection of the
corresponding row and column. When the connections are
undirected, the adjacency matrix is symmetric with respect
to the main diagonal. Consequently, the same information is
shown in both the upper and lower triangular matrices. Ad-
jacency matrices have been shown more readable than node-
link diagrams for many graphical-perception tasks, particu-
larly when networks are dense [2, 10, 19]. Since many real-
world networks are naturally dynamic and associated with
multiple attributes, analyzing multiple networks at once is a
common yet difficult task. Therefore, visualizations that aid
users to compare and contrast multiple networks are of great
importance.

Juxtaposition is an effective visual design that encourages
side-by-side visual comparison of multiple facets of a com-
plex data set, without overplotting or occlusion that may oc-
cur in superimposition, which overlays many objects in a sin-
gle visualization. Although conventional side-by-side jux-
taposition, or small multiples [6, 29], has been applied to
adjacency matrices for comparative analysis [4], it predom-
inantly relies on the use of the viewer’s memory and attention
shifts to make connections between repeated objects [12].
When too much of the comparative burden is added onto the
viewer’s mental effort, he or she can fail to detect changes
even if the information is well represented in the visualiza-
tion [25]. Designing appropriate juxtaposed visualization for
adjacency matrices, which allows visual processing to con-
nect patterns across multiple matrices with less mental effort,
is still an open problem. Furthermore, an effective represen-
tation of multiple adjacency matrices is an instance of fun-
damental visualization research: making more effective use
of display space to increase the amount of data with which
users can effectively work [13, 29]. However, it remains un-
clear how different matrix representations and juxtaposition
designs affect the ability of users to quickly and reliably un-
derstand the underlying information.

In this paper, we evaluate the representation and juxtaposi-
tion designs for visualizing adjacency matrices through a se-
ries of controlled experiments. We investigate the effects of
matrix representation on the speed and accuracy of perform-
ing graphical-perception tasks. Based on human symmetric
perception, an automatic visual process that forms an integral
part of perceptual organization [30], we propose two alter-
native juxtaposition designs to the conventional side-by-side
juxtaposition, and study how users perform visual search and
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comparison tasks regarding these juxtaposition types. Our re-
sults show that triangular matrices are as effective as square
matrices, and the juxtaposition types (side-by-side, back-to-
back, and complementary) perform differently. With the de-
sign guidelines derived from our studies, we present a com-
pact visualization termed TileMatrix for juxtaposing a large
number of matrices, and demonstrate its effectiveness in ana-
lyzing multi-faceted, time-varying networks using real-world
data.

RELATED WORK
Previous research related to this work can be classified as fol-
lows: matrix visualization, graphical perception, and compar-
ative visualization.

Matrix Visualization

The node-link diagram and adjacency matrix are the most
popular for network visualization. Node-link diagrams are
generally suitable for sparse networks while adjacency ma-
trices are more effective for dense networks, as shown by
Ghoniem et al. [10], Keller et al. [19] and Alper et al. [2].
Many research efforts have recently been made to enhance
the usability and readability of matrix-based network visu-
alization. MatrixExplorer [15] couples a node-link diagram
and an adjacency matrix representation of the same network
by juxtaposed views. MatLink [16] augments matrix repre-
sentation with links connecting nodes in lines and columns to
reconcile the difficulty of path-related tasks in matrix visual-
ization [10]. NodeTrix [14] visualizes community structures
(dense sub-networks) as adjacency matrices, which are then
reconnected with links that represent the sparse parts of the
network. Dinkla et al. [8] exploited the structural character-
istics of gene regulatory networks to design compressed ad-
jacency matrices. Behrisch et al. [S] placed matrices of high
similarity together in a projection space. However, such auto-
mated approach cannot reveal multiple facets of the data, and
the order in time is lost after projection, which can make it
difficult to identify trends of networks over time. Cubix [4]
stacks adjacency matrices over time to form a 3D space-time
cube, and supports interactive transitions to projected 2D jux-
taposed views. While most previous works employed square
matrices for visualizing networks, we explored the effects of
triangular matrices and their use in designing compact jux-
taposed visualization for showing more readable networks
within a limited display space.

Graphical Perception

Graphical perception is defined as the visual decoding of
information encoded on graphical displays [7]. Cleveland
and McGill [7] established a scientific foundation of graph-
ical methods for data analysis and representation through hu-
man graphical perception. Since then, evaluating user per-
formance on graphical perception has been an important re-
search topic in the fields of human computer interaction and
information visualization. Lohse [21, 22] developed a cog-
nitive model for perception and understanding of graphs, and
performed an empirical study to compare computer-simulated
graphical perception based on his model with the actual user
performance. Gillan and Lewis [11] also proposed a percep-
tual model and investigated human interaction with graphs,
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by asking users to accomplish visual comparison tasks using
various visualizations such as line graphs, scatter plots, and
stacked bar graphs.

Graphical-perception tasks measure how users interpret the
information encoded on graphical displays. The effects of
visual variables for various graphical-perception tasks have
been explored in the literature. Heer et al. [13] conducted
two controlled experiments to measure the effects of chart
size and layering on user performance while performing vi-
sual discrimination and estimation tasks. Javed et al. [18]
evaluated user performance for visual comparison, slope, and
discrimination tasks for multiple line graph visualizations.
Fuchs et al. [9] investigated user performance of different
temporal glyph designs in a small multiple setting. Most re-
cently, Albers et al. [1] measured user performance of several
visualization design choices for matching visual encodings to
various aggregate comparison tasks. Our work attempts to
empirically evaluate the effects of visual representation and
juxtaposition on graphical perception of adjacency matrices.

Comparative Visualization

Visual analysis often involves visual comparison of multi-
ple objects. Gleicher et al. [12] described juxtaposition, su-
perimposition, and explicit encoding as three generic design
approaches to visual comparison, and suggested that mul-
tiple designs can be combined to created hybrid compara-
tive visualization. Meanwhile, Javed and Elmqvist [17] di-
vided the design space of composite visualization into juxta-
position, superimposition, overloading and nesting. Jacques
Bertin [6] and Edward Tufte [29] introduced small multiples,
the most popular juxtaposition design in both the scientific
literature and the mass media. Such side-by-side design has
been shown more effective than animation for dynamic net-
works [3] and trends [24]. Tominski et al. [28] proposed
shine-through and folding interactions for visual compari-
son besides side-by-side comparison. Far more examples are
given by Gleicher et al. [12] in a survey of over 110 references
on visual comparison for information visualization. Our goal
is to obtain a more general understanding about the design of
alternatives juxtaposition for adjacency matrix visualization,
not just the conventional side-by-side juxtaposition.

STUDY 1: EVALUATING MATRIX REPRESENTATION

As stated in the beginning, a symmetric adjacency matrix can
be represented in either a square matrix (Figure 1 (left)) or
a triangular matrix (Figure 1 (right)). The goal of the first
experiment is to determine the impact of the matrix represen-
tation on the user’s graphical perception: how does the choice
of square or triangular matrices affect user performance?

Tasks

To keep the experiment manageable in time and effort for the
participants, we did not include complex tasks related to find-
ing paths and common neighbors since they can be difficult
for the given matrix visualization [10]. Rather, such tasks can
be accomplished more easily with node-link diagrams [10]
or with additional visual cues [16]. Since we were interested
in studying the effects of two different representations, tasks
that are less relevant to the representation, such as counting
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Figure 1. Adjacency matrix representations. Left: a square matrix rep-
resentation. Right: a triangular matrix representation.

the number of nodes or finding a node given its label [10],
were also excluded in our experiment. Finally, three generic
tasks were selected in an attempt to capture both overview
and detail use cases of matrix visualization:

(T1) How many communities can you identify in the matrix?
(T2) Which node has the maximum number of neighbors?

(T3) Are the two specified nodes connected in the matrix?

T1 is an overview graphical-perception task that represents a
common use case of matrix visualization for community de-
tection in networks [14]. T2 is an exploratory visual search
task that requires browsing through the visualization to find
information. T3 is a confirmatory visual search task that asks
the users to make judgments once they locate the specified
targets. T1 and T2 are related to the interpretation of blocks
(communities) and lines (a node’s neighbors), which are cat-
egorized as structural features by Mueller et al. [23]; T2 and
T3 were also used in previous studies [10, 19].

Hypotheses

(H1) The square matrix will perform as well as the triangular
matrix for overview perception (T1). For viewing the shapes
of communities in a matrix, we believe that squares and tri-
angles should be equally easy for perception.

(H2) The square matrix will outperform the triangular matrix
for exploratory search (T2). For square matrices, users scan
through rows or columns to view the neighbors of one node;
for triangular matrices, users need to follow an L-shaped path
to view the corresponding neighbors. We expect that follow-
ing a straight line in rows or columns will have better user
performance than following an L-shaped path.

(H3) The square matrix will outperform the triangular ma-
trix for confirmatory search (T3). Square matrices encode
one connection between two nodes twice in the visualiza-
tion, while triangular matrices represent the connection ex-
actly once. We predict that the repetition of such information
will have a direct effect on user performance.

Experiment Design
The study was conducted as a within-subjects experiment
with 2 experimental conditions (matrix representations) and

271

CHI 2015, Crossings, Seoul, Korea

10 repetitions for each condition. For each repetition, the par-
ticipant was presented with only one condition. We counter-
balanced the selection of condition in the 10 repetitions so
that each participant performed the same number of repeti-
tions for both conditions while the choice of condition is ran-
dom.

In the spirit of classic graphical perception experiments [9,
13, 18], we evaluated the different visual representations
alone, disabling selecting, highlighting, zooming, and other
interactive operations. Ghoniem et al. [10] have shown that
in most cases, matrix visualization was insensitive to size and
density variation and no interaction between size and density
was found for the matrix representation. Hence, while the
size and density of the matrices vary across repetitions for
creating diverse experimental datasets, the effects due to size
and density were not explicitly studied in our experiment.

We follow the convention of perception studies [13, 18, 20]
in using synthetic data to allow control over the characteris-
tics of experimental datasets. We first generated a random
number of communities of varying sizes, then added a ran-
dom number of edges for randomly selected nodes. In or-
der to eliminate any ambiguity with respect to T2, which is
to find the most connected node, we added an extra 20% of
edges to the most connected node in every matrix. We la-
beled the nodes numerically according to the order of their
creation, and ordered the nodes in such a way that those from
the same community are placed together to preserve the com-
munity structures in the matrix. In this way, we obtained
repetitions of varying number of nodes (from 20 to 50) and
edges (density from 0.2 to 0.5), as well as varying number
of communities (from 3 to 6). Specifically, the labels of the
two specified nodes for T3 are highlighted in a distinct color.
Figure 1 shows one example of the datasets we used for this
experiment.

20 subjects (14 males, 6 females) were recruited for this ex-
periment. The subjects were graduate students, aged 24 to 32
years. Half of the subjects have backgrounds in computer sci-
ence, and most are using a computer more than 20 hours per
week. All subjects have normal or corrected-to-normal vi-
sion. 40% of the subjects said they were familiar with matrix
visualization.

We deployed the experiment on the web using HTMLS
and JavaScript. Each subject used their own machine and
browser, and the visualization images were scaled to fit the
corresponding screen space before the test. Due to our within-
subjects design, each user performed tasks regarding different
representation types on the same screen he or she had. Hence,
the influence of screen size has been alleviated when studying
the effects of representation types. Prior to the experiment,
subjects viewed a tutorial that gave a basic explanation of the
two matrix representations, and they performed some train-
ing tasks to get familiar with the user interface of the exper-
imental system. We asked the subjects to answer as quickly
as possible while trying to make answers accurate. After the
subjects finished tasks for all repetitions, they were asked to
participate in a semi-structured interview.
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Figure 2. Mean completion time and accuracy for Study 1.

Table 1. RM-ANOVA analysis of results for Study 1.

Factor Fii9 | p

Time 0.82 | 0.37
Overall

Accuracy | 0.16 | 0.69

Time 0.08 | 0.79
T1

Accuracy | 040 | 0.53

Time 048 | 049
T2

Accuracy | 0.29 | 0.60

Time 1.56 | 0.22
T3

Accuracy | 0.18 | 0.68

Results and Discussion

We measured the time participants needed to complete each
task and the correctness of their reported answers. User per-
formance measures were evaluated using Repeated Measures
Analysis of Variance (RM-ANOVA) to test for significant ef-
fects. For each participant’s performance, we used the av-
erage of the repetitions for the following analysis. We re-
port completion time and accuracy in Figure 2 and our RM-
ANOVA analysis in Table 1.

Our first hypothesis was that the square matrix would perform
as well as the triangular matrix for overview perception. This
hypothesis was confirmed. We found that the accuracy and
completion time were almost the same across the two repre-
sentations, which indicates that users were able to interpret
communities in both representations.
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One surprising outcome of our study is that the matrix rep-
resentation type has no significant effect on the completion
time of exploratory search tasks like finding the most con-
nected node in a matrix. In other words, it seems that par-
ticipants did not become significantly slower when following
the L-shaped path to view one node’s neighbors. Participants
commented that tracking neighbors for one node was a little
bit hard at start, but their speed got faster after the training
trials.

We also hypothesized that the square matrix would outper-
form the triangular matrix for confirmatory search. Contrary
to our hypothesis, our quantitative results did not show signif-
icant differences between the matrix representations. Rather,
these results indicate that the participants performed equally
well in the confirmatory search, regardless of the matrix rep-
resentations.

Overall, results from our first experiment revealed that users
were able to interpret triangular matrices correctly, and their
task performance with the triangular matrix was comparable
to that with the square matrix.

STUDY 2: EVALUATING MATRIX JUXTAPOSITION

The goal of the second experiment is to investigate the ef-
fects of juxtaposition types in the presence of multiple adja-
cency matrices. More specifically, we are interested to see
how users perform visual search and comparison tasks under
different juxtapositions. Is there a benefit to introducing more
types of juxtapositions other than conventional side-by-side
juxtaposition?

In our previous experiment we found that square and triangu-
lar representations of adjacency matrix had comparable ac-
curacy and completion time, so we removed square matrices
from consideration in this experiment and focused on com-
paring triangular matrices of different juxtaposition types.

Matrix Juxtaposition

We divide the design space of comparative juxtaposition into
three general types, based on how the relationships between
the related parts of different adjacency matrices are encoded:

Side-by-side juxtaposition (SID), also known as small mul-
tiples [29], repeats the same representation multiple times
without any modification to the design (Figure 3 (left)), and
has been applied to various domains such as system manage-
ment, quality control, and medical record analysis [29]. This
translational juxtaposition is the conventional design of com-
parative juxtaposition.

Back-to-back juxtaposition (BAC), which reverts the order
of the rows or columns in one of two matrices to form a sym-
metric composition (Figure 3 (middle)). This design is moti-
vated by human symmetric perception, which is an automatic
visual process that forms an integral part of perceptual orga-
nization [30]. Such symmetric juxtaposition has been shown
effective in identifying similarity and contrasts in computer-
aided diagnosis. For example, radiologists are using the dif-
ferences between the symmetric juxtaposition of left and right
breasts in mammograms (photographs of breasts made by X-
rays) to help detect certain malignant breast cancers [26].



Visualizing Data

CHI 2015, Crossings, Seoul, Korea

8%
IL-II EEE

|}

]

| |

1]

.|

|

BNBSEBIBOSIISASNRNY

Figure 3. Adjacency matrix juxtapositions. Left: side-by-side juxtaposition (SID). Middle: back-to-back juxtaposition (BAC). Right: complementary

juxtaposition (COM).

Complementary juxtaposition (COM), which takes two tri-
angular matrices together to form a compact square matrix.
Consequently, the rows and columns in the two matrices are
complementary, and the positions of cells in the two matri-
ces are symmetric with respect to the main diagonal (Fig-
ure 3 (right)). In other words, two triangular matrices form an
asymmetric square matrix. This design is a variant of back-
to-back juxtaposition, and only applies to triangular matrices.

We think these three juxtaposition types are fundamental:
they define the juxtaposed relationship of two matrices (trans-
lational juxtaposition for SID or symmetric juxtaposition for
BAC & COM), representing the basic cases for compara-
tive visualization. More importantly, they provide the build-
ing blocks that can assemble complex juxtaposition of many
more matrices. In other words, the three juxtaposition types
can be combined to create hybrid juxtaposed visualization.

Tasks

Typical visual comparison tasks often require users to scan
and compare related elements simultaneously. Three tasks,
modified from the tasks selected in our previous experiment,
were included in this experiment:

(T4) Does the largest community have the same number of
nodes in the following matrices?

(T5) Does the most connected node have the same number of
neighbors in the following matrices?

(T6) How many times (0, 1, or 2) are the two specified nodes
connected in the following matrices?

In each task, users were asked to identify multiple targets
within two matrices presented in one of the three juxtapo-
sition types, and determine the similarity or difference of the
targets. As in our prior experiment, these tasks were selected
to represent overview and detail use cases of matrix visualiza-
tions, with a balance between task complexity and suitability.

Hypotheses

(H4) For tasks involving comparison of structures and pat-
terns in matrices (T4, T5), BAC & COM (symmetric juxta-
position) will outperform SID (translational juxtaposition) in
task completion time. The strength of symmetric perception
is that it allows easier comparison of shapes across objects.
We believe that the mental alignment due to symmetric per-
ception will result in better completion time by connecting
patterns and reveal their differences across matrices.
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(HS) When searching and comparing a specific target in ma-
trices (T6), SID, BAC and COM will have comparable perfor-
mance. Comparing a specific target requires accurately locat-
ing the same item across matrices. We predict that symmetric
juxtaposition requires more mental effort to locate a specific
target across matrices. However, we think that the easier men-
tal alignment due to symmetric perception compensates this
additional effort, resulting in a performance comparable to
that obtained using translational juxtaposition.

Experiment Design

The experiment used a 3 (juxtaposition) x 3 (task) within-
subjects design with 9 repetitions. For each repetition, the
participant was presented with only one condition. We
counter-balanced the repetitions so that each participants per-
formed the same number of conditions for three conditions
while the selection of condition in each repetition was ran-
dom.

We followed the design choices we made in our previous ex-
periment. We first generated matrices that have varying num-
bers of nodes (from 20 to 50) and edges (density from 0.2
to 0.5), and varying numbers of communities (from 3 to 6).
Then for each generated matrix, we randomly assigned sev-
eral nodes to a different community and added edges for ran-
domly selected nodes to get a new matrix. The two matrices
were then grouped using one of the three juxtaposition types.
Figure 3 shows one example of the datasets we obtained for
this experiment.

We recruited 28 subjects (17 males, 11 females, aged 24 to
39 years), who are graduate students or professionals from
the fields of computer science, electric engineering, chem-
istry, statistics, geographic information science, to name a
few. Half of the subjects had previously participated in the
first experiment. 36% of the subjects said they had experi-
ence with multiple matrix visualization. The experiment fol-
lows a similar procedure to the prior experiment. After the
subjects finished all tasks, they were asked to rate their satis-
faction with SID, BAC and COM in each task on a question-
naire (e.g., Which view do you think is the best to identify the
size difference of the largest community? (A: side-by-side;
B: back-to-back; C: complementary, D: no preference)). Fi-
nally, they were asked to participate in a semi-structured in-
terview.
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Figure 4. Mean completion time and accuracy for Study 2.

Results and Discussion

We report completion time and accuracy in Figure 4. Sta-
tistical significance was tested for all groups and each pair
respectively. Table 2 summarizes all results and highlights
the significant ones. The qualitative feedback is shown after-
wards in Table 3.

In H4 we hypothesized that BAC & COM would be faster
than SID due to their symmetric alignment for detecting
changes of structures and patterns in matrices. This hypoth-
esis was confirmed. We found that SID took significantly
longer time than BAC & COM. This result validates our de-
sign goals: facilitating identification of the repeated patterns
and differences of connectivity between juxtaposed matrices.
Subject ratings (Table 3) confirmed that most participants pre-
ferred either BAC or COM in accomplishing T4 and T5. Par-
ticipants commented that BAC and COM are helpful in con-
necting the left and right matrices, while SID requires more
mental effort in certain cases.

Our results confirmed H5: BAC & COM would not have
a negative impact on performance when searching and com-
paring a specific target in matrices. We found no significant
difference between the juxtaposition types in task completion
time or accuracy. Participants do not seem to have a strong
preference in choosing a particular juxtaposition for T6. Ac-
curacy seems to stabilize at a high rate for each task in any
juxtaposition. It indicates that the participants were equally
careful in visual comparison, regardless of juxtaposition type.

DESIGN IMPLICATIONS
Based on our experimental results, we offer the following im-
plications for designing adjacency matrix visualizations:
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Table 2. RM-ANOVA analysis for Study 2 (s:SID, b:BAC, c:COM).

Factor Fosa | Dspe | Psp | Pse | Poe
Overall Time 4.81 |0.01 |0.01 |0.03 |0.77
Accuracy | 0.59 | 0.56 | 0.30 | 042 | 091
T4 Time 8.47 | 0.001 | 0.003 | 0.001 | 0.49
Accuracy | 0.32 | 0.73 | 0.82 | 041 | 0.57
s Time 430 |0.02 |0.02 |0.03 |0.86
Accuracy | 0.73 | 049 | 025 | 049 | 0.63
T6 Time 146 | 024 |0.12 | 046 | 0.26
Accuracy | 0.10 | 091 | 0.64 | 0.84 | 0.81

Table 3. Subjective user preference for tasks in Study 2.

SID | BAC | COM | None
T4 | 0% | 46% | 50% | 4%
T5 | 10% | 36% | 40% | 14%
T6 | 21% | 21% | 18% | 40%

Triangular representation does not hamper graphical per-
ception of adjacency matrices. One unexpected result was
that the triangular matrix neither slowed down the task com-
pletion time nor hurt the accuracy. The triangular representa-
tion cuts the size of the matrix in half without any observed
downside, as long as the viewer learns how to interpret the
triangular matrix.

Symmetric juxtaposition rather than translational jux-
taposition should be preferred for detecting changes of
structures and patterns. The mental alignment due to sym-
metric perception is able to connect patterns and structures
across matrices, which facilitates visual comparison with less
mental effort.

Complementary juxtaposition is beneficial for optimizing
utilization of display space. Since complementary juxtapo-
sition doubles the data density (data marks per display area)
compared to other juxtaposition types, we advocate its use
when space constraints warrant.

TILEMATRIX: CREATING COMPACT VISUALIZATION BY

TILING THE MATRICES

With the design implications, we devise a compact visualiza-
tion — TileMatrix, coupling the side-by-side juxtaposition,
back-to-back juxtaposition and complementary juxtaposition
to display a large number of adjacency matrices. The TileMa-
trix representation is inspired by the physical act of laying
tiles to cover floors, walls, ceilings and roofs. A file is gener-
ally designed in an interlocking pattern so that multiple tiles
fit together to have an aesthetic appearance. In TileMatrix,
one tile is a triangular matrix. Every two adjacent matrices are
placed in either back-to-back juxtaposition or complementary
juxtaposition, resulting in a hybrid juxtaposition that also in-
cludes side-by-side juxtaposition . In the following sections,
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we first discuss typical usage scenarios for displaying a large
number of matrices, and then describe our TileMatrix sys-
tem. We demonstrate its effectiveness in a case study using
real-world data, and report initial user feedback.

Usage Scenarios

A weighted network associates a weight with every edge in
the network, representing the strength of the connection be-
tween the entities [2]. In many network applications, the
weights of edges can be quite complex and dynamic. On
the one hand, the weight of the connection between the en-
tities can change as multiple facets are associated with the
connection. For instance, consider a collection of National
Basketball Association (NBA) players as the entities, who
are connected either strongly or weakly based on the simi-
larity of their performance. Each player is associated with
multiple performance facets: points, rebounds, assists, steals,
blocks, and many others. Therefore, players can have dif-
ferent weights of connections on different facets. On the
other hand, the weight of a connection between the entities
can change over time. This is also seen in the NBA players
example since their performance often vary in different years.

Visual analysis of such multi-faceted, time-varying weighted
networks is challenging as the number of networks grows in
both data and temporal domains. Although we can always
reduce the number of facets using dimension reduction tech-
niques or aggregate networks over time, we learn little about
the heterogeneity nor the dynamics of the network. The re-
duced dimensions do not always have a semantic interpre-
tation, and the temporal differences are hidden in temporal
aggregation. Consequently, we understand neither how to in-
terpret the relationships from multiple perspectives nor how
certain temporal trends are formed.

TileMatrix offers one alternative solution to visualizing multi-
faceted, time-varying weighted networks without losing in-
formation — the matrices of networks are tiled simultane-
ously in two directions of the display space: matrices in dif-
ferent facets are tiled in columns while matrices over time
are tiled in rows. In this way, the viewer can examine and
compare networks of multiple facets at a particular time step
(horizontally), as well as networks of a particular facets over
time (vertically). The repeated patterns and differences in the
relationship of entities can be identified, in both data and tem-
poral domains.

Case Study

To demonstrate the effectiveness of TileMatrix, we used our
system to explore the NBA statistics dataset [27], which con-
sists of 16 performance facets for NBA players: GP (Games
Played), MIN (Minutes Played), PT (Points Scored), AST
(Assists), REB (Rebounds), STL (Steals), BLK (Blocked
Shots), TO (Turnovers), ORE (Offensive Rebounds), DRE
(Defensive Rebounds), FGA (Field Goals Attempted), FGM
(Field Goals Made), FTA (Free Throws Attempted), FTM
(Free Throws Made), TPA (Three Point Attempted), and
TPM (Three Point Made). To view a relatively large number
of matrices with TileMatrix, in this study we extracted play-
ers that have relatively longer NBA careers (at least 15 years
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compared to an average career length of 5 years) from 1989
to 2003. This gave us 11 NBA players: Horace Grant, Reggie
Miller, Vlade Divac, Avery Johnson, Glen Rice, Karl Malone,
Scottie Pippen, Charles Oakley, Kevin Willis, Rod Strickland,
and Mark Jackson. The similarity networks for all pairs of
players were computed regarding each facet for each year.
The corresponding TileMatrix contains 16 15%11%11/2 =
14520 cells. The color of self-connections is set to grey. Ma-
trices of adjacent facets are assigned similar colors while dis-
tant facets are colored differently for overall appearance.

By analyzing the semantic meaning of the performance
facets, we roughly categorized them into three groups based
on the criteria of the performance measurement: activity =
{GP, MIN}, score = {PT, FGA, FGM, FTA, FTM, TPA,
TPM}, aid = {AST, STL, BLK, REB, ORE, DRE, TO}.
Therefore, we reordered the facets in TileMatrix to place re-
lated facets in the same category closer. To highlight the con-
trasts between highly and weakly connected nodes, we re-
ordered the nodes by the weighted average degree.

Figure 5 shows the resulting TileMatrix visualization after re-
ordering. Facets are labeled on the top of TileMatrix while
years are on the left. The names of the players are also labeled
accordingly. From the TileMatrix visualization, we had a few
key findings on the multi-faceted, time-varying relationships
of the NBA players that had relatively longer careers:

Temporal trends regarding a particular facet. To under-
stand the time-varying similarity/dissimilarity of players’ per-
formance with respect to one facet, we can simply view matri-
ces form a column of TileMatrix. For example, the left-most
column of TileMatrix in Figure 5 shows the time-varying sim-
ilarity networks based on the number of games the players
had played, from which we can observe the following trend:
(a) in 1989, 1991, and 1997: one or two players had played
quite a different number of games compared to the rest of
players, as the their connections to the others were relatively
weak (e.g., CO (Charles Oakley) and AJ (Avery Johnson) in
1989, VD (Vlade Divac) in 1991, and SP (Scottie Pippen)
in 1997); (b) in 1992, 1993, 1996 and 1999: the number
of games played were almost the same among the players,
since the matrix cells show very strong connections; (c) dur-
ing 2000-2003: players started to have distinct degrees of ac-
tivity, and the differences seemed to reach a peak at the end of
this time window (e.g., in 2003, most players were strongly
connected to only a few other players while weekly connected
to the majority). This could be partly because some players
had played for many years, and their performance became di-
verse compared with their early career.

Repeated patterns across multiple facets at a specific time.
As implied from our experiments, the symmetric juxtaposi-
tion has significant effects on connecting patterns and struc-
tures across matrices. To view the multi-faceted similar-
ity/dissimilarity of players’ performance at a specific time, we
can focus on one row of matrices in TileMatrix. For instance,
the first row of TileMatrix in Figure 5 shows the multi-faceted
similarity networks of players in 1989. Approximately re-
peated visual patterns can be identified between the following
groups of facets respectively: FGA & FGM, FTA & FTM,
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Figure 5. The TileMatrix visualization of 16-faceted similarity networks
of National Basketball Association (NBA) players from 1989 to 2003.
Matrices of different facets are tiled in columns, while matrices of dif-
ferent years are tiled in rows. The color opacity encodes the strength of
the connection.

and TPA & TPM. From a zoom-in view of the facets in Fig-
ure 6 (a), we learned that: if one player (e.g., RM (Reggie
Miller)) behaved differently from the others in one facet (e.g.,
TPA), he was very likely to perform differently from the oth-
ers in another related facet (e.g., TPM); if the performance
of a group of players (e.g., KW (Kevin Willis), HG (Ho-
race Grant), RS (Rod Strickland), MJ (Mark Jackson), CO
(Charles Oakley), VD (Vlade Divac)) were similar to each
other in one facet (e.g., FTM), such similarity relationship
could also be found in another related facet (e.g., FTA).

Contrasts between multiple facets at a specific time. An-
other implication from our experiments is that the symmet-
ric juxtaposition also helps reveal contrasts between adjacent
facets. Take the similarity networks on ORE and DRE in

276

CHI 2015, Crossings, Seoul, Korea

(b)

Figure 6. Two zoom-in views of the TileMatrix visualization in Figure 5.
(a) Matrices of 6 selected facets (FGM, FTA, FTM, TPA, TPM, AST) in
1989. (b) Matrices of 4 selected facets (REB, ORE, DRE, TO) in 1991.

1991 as an example (shown in Figure 6 (b)). We observed
that the degree of dissimilarity to other players are differ-
ent between offensive rebounds and defensive rebounds for
HG (Horace Grant), while it roughly stayed the same for KW
(Kevin Willis). A comparison between REB and TO for the
connections of KW (Kevin Willis) also highlights the con-
trasts between these two facets: his performance was more
different from others on rebounds than on turnovers.

Temporal trends regarding multiple facets. Because of the
two dimensional tiling layout in TileMatrix, we are able to
examine the temporal trends of adjacent facets, by viewing
matrices in adjacent columns as a whole. For example, the
columns of TPA and TPM of TileMatrix in Figure 5 shows
a trend for the dissimilarity of players’ performance regard-
ing these two facets: (a) starting from 1989, only one player
RM (Reggie Miller) performed differently from the others;
(b) the difference among players became more and more ob-
vious over the years until it reached top in 1996, when three
players performed very differently from the others regarding
both three point shots and scores; (c) after that, the degree of
dissimilarity among the players dropped; (d) finally in 2003,
RM (Reggie Miller) once again became the only one that per-
formed differently compared with the other players, just like
how the trend started in 1989. Comparisons between other
related facets also revealed interesting temporal trends.

Informal User Feedback

We observed six users (5 males, 1 female) viewing the
TileMatrix in Figure 5, and a conventional side-by-side jux-
taposed view of square matrices (denoted as SidMatrix) in
Figure 7. SidMatrix displays the same number of matrices as
TileMatrix with the same color encoding. We explained the
designs of TileMatrix and SidMatrix to the users, and how the
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Figure 7. The side-by-side juxtaposed matrix visualization (SidMatrix)
for the same data as TileMatrix in Figure 5.

information of the multi-faceted, time-varying similarity net-
works of NBA players is presented. Our task was very infor-
mal, simply asking them to comment on their understanding
and visual comfort of the two visualizations, and how easily
they could find interesting trends in each visualization. The
two visualizations were uniformly scaled to the same width
and put side by side for direct comparison.

As initial feedback, all six participants were able to under-
stand TileMatrix as well as SidMatrix. One general feedback
is that a cell in SidMatrix is much smaller and less legible
than that in TileMatrix. This is expected since the two visu-
alizations display the same number of matrices, square ma-
trices in SidMatrix take double space compared with trian-
gular matrices in TileMatrix, and thus each cell in SidMatirx
is displayed in half size of that in TileMatrix. Participants
commented that TileMatrix was easier to see details. They
were more comfortable in seeing larger cells with more ef-
fective information in TileMatrix. Participants also explained
that with TileMatrix, it was easier to compare adjacent ma-
trices when they are in back-to-back or complementary jux-
taposition, since the symmetric layout helped them to see the
subtle differences, which were not as obvious in SidMatrix.
However, some participants reported that TileMatrix required
more training effort to follow the L-shaped path when view-
ing the connections of a particular player, while they were
used to following straight lines in SidMatrix. This is consis-
tent with the findings in our first controlled experiment.

Our observations partly explained the tradeoffs of introduc-
ing hybrid juxtapositions of triangular matrices in visualizing
a large number of networks. While such hybrid design makes
better use of the display space, and may be useful for identify-
ing repeated patterns and differences across multiple matrices
more comfortably and clearly, it requires more training effort
than the conventional side-by-side juxtaposed visualization.
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DISCUSSION AND FUTURE WORK

As stated in the beginning, the triangular matrix works when
the connections in a network are undirected. As for directed
networks, it is not possible to increase the data density by jux-
taposing triangular matrices. Our experiments considered a
small set of generic tasks for matrix visualization. We believe
these findings generalize to a wider range of situations, but
have not confirmed this empirically. Also we did not include
interactive operations in our experiments but only focused on
evaluating the effects of different representations and juxta-
positions alone. Still, future work is needed to determine the
additional effects when visualization is augmented by inter-
action.

Our TileMatrix design is effective in viewing the similarity
and differences in matrices across facets and time, in partic-
ular for comparing matrices placed at nearby locations. On
the other hand, using TileMatrix requires training to follow
L-shaped paths when viewing one node’s neighbors, and thus
perhaps requiring more effort when tracing one node’s neigh-
bors across multiple matrices. Providing additional interac-
tions such as highlighting one’s neighbors across matrices
when selecting a node could be helpful. Although the ef-
fect of colors used in TileMarix was not explicitly studied in
our experiments, the design of TileMatrix can be easily ex-
tended, and the task performance with additional factors such
as colors will be investigated in the future.

The scalability of TileMatrix depends on several factors: the
number of attributes (M), the number of time steps (T), and
the number of entities per attribute per time step (N). The to-
tal number of cells in TileMatrix is M * T * N * N/ 2. Given a
display screen, a tradeoff between N, M and T must be made
when using TileMatrix, for example: (1) the network is small
so many attributes and/or time steps are shown (as in our case
study); (2) the network is medium sized so a medium number
of attributes and time steps are shown; and (3) the network is
large, thus a few selected attributes and time steps are shown.
We note that if the display screen cannot hold all cells, pan-
ning and zooming could be provided to view sub-regions on
demand. Although we demonstrate the effectiveness of our
TileMatrix design with a case study and informal user feed-
back, the trade-off between design complexity and task per-
formance needs to be better understood in the future.

CONCLUSION

In this paper, we conducted two controlled experiments to as-
sess the performance of adjacency matrices in two represen-
tations — square matrices and triangular matrices, and three
juxtaposition designs — side-by-side juxtaposition, back-to-
back juxtaposition, and complementary juxtaposition. We
quantitatively measured speed and accuracy based on generic
tasks in each experiment. The results showed that triangular
matrices were as effective as square matrices, and the three
juxtaposition types performed differently. We showed that
back-to-back juxtaposition and complementary juxtaposition
are generally a good choice for detecting changes of struc-
tures and patterns across matrices due to the mental alignment
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of symmetric perception. Based on the design guidelines de-
rived from our studies, we propose a compact visualization
termed TileMatrix for juxtaposing a large number of matrices,
and show its benefits in analyzing multi-faceted, time-varying
networks using real-world data.
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