

Citation for published version:
Sindhwani, S, Lutteroth, C & Weber, G 2019, ReType: Quick Text Editing with Keyboard and Gaze. in CHI 2019:
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems., 203, Conference on
Human Factors in Computing Systems - Proceedings, Association for Computing Machinery, pp. 1-13, CHI
2019: Weaving the threads of CHI, Glasgow, UK United Kingdom, 4/05/19.
https://doi.org/10.1145/3290605.3300433
DOI:
10.1145/3290605.3300433

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in CHI : Conference on Human Factors and
Computing Systems (2019), VOL#, ISS#, 2019 https://doi.org/10.1145/3290605.3300433

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2023

https://doi.org/10.1145/3290605.3300433
https://doi.org/10.1145/3290605.3300433
https://researchportal.bath.ac.uk/en/publications/83223317-2c4f-4bae-ae59-f63c80631699

ReType:Quick Text Editing with Keyboard and Gaze
Shyamli Sindhwani
University of Auckland
Auckland, New Zealand

ssin820@aucklanduni.ac.nz

Christof Lutteroth
University of Bath

Bath, UK
c.lutteroth@bath.ac.uk

Gerald Weber
University of Auckland
Auckland, New Zealand
g.weber@auckland.ac.nz

ABSTRACT
When a user needs to reposition the cursor during text edit-
ing, this is often done using the mouse. For experienced
typists especially, the switch between keyboard and mouse
can slow down the keyboard editing workflow considerably.
To address this we propose ReType, a new gaze-assisted po-
sitioning technique combining keyboard with gaze input
based on a new ‘patching’ metaphor. ReType allows users
to perform some common editing operations while keeping
their hands on the keyboard. We present the result of two
studies. A free-use study indicated that ReType enhances the
user experience of text editing. ReType was liked by many
participants, regardless of their typing skills. A comparative
user study showed that ReType is able to match or even beat
the speed of mouse-based interaction for small text edits. We
conclude that the gaze-augmented user interface can make
common interactions more fluent, especially for professional
keyboard users.

CCS CONCEPTS
•Human-centered computing→ Text input; Pointing.

KEYWORDS
Eye gaze tracking; text editor; positioning; keyboard; typo-
graphical error; patching metaphor; natural user interfaces

ACM Reference Format:
Shyamli Sindhwani, Christof Lutteroth, and Gerald Weber. 2019.
ReType: Quick Text Editing with Keyboard and Gaze. In CHI Con-
ference on Human Factors in Computing Systems Proceedings (CHI
2019), May 4–9, 2019, Glasgow, Scotland UK. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3290605.3300433

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300433

1 INTRODUCTION
With advances in hardware and software, eye gaze tracking
may soon be built into most of our devices, especially on the
desktop. Now imagine you spot a typo you need to correct.
What would you expect from a natural user interface (NUI)?
That you still have to use the mouse to point to the typo,
although you are already looking at it? We present ReType,
a NUI paradigm integrating keyboard with gaze: you look at
the place you want to edit, and “re-type” the text as you want
it, including a short lead-up to the changed characters. This
is similar to ways we speak about typos while we correct
them.
Eye gaze trackers are used to measure and possibly re-

spond to human eye gaze. While interacting with the com-
puter screen, eye gaze is a good indicator of the user’s point
of interest and is considered one of the most natural forms
of input [36, 37, 44]. Hence it seems natural to use gaze
input for pointing and positioning tasks. There have been
numerous attempts to utilize gaze in everyday computer
interaction; gaze has been used for pointing in various ap-
plications [1, 12, 21] and can also be used as an augmented
input in addition to mouse or keyboard [18, 19, 47].

However, gaze input comeswith several design constraints
which need to be addressed in order to design user interfaces
with minimum eye input inaccuracies [11]. Avoiding the Mi-
das Touch problem [41] is one such constraint. If we want to
use gaze movements as intentional commands, it can be diffi-
cult to distinguish them from unintentional gaze movements
necessary to consume the information on the user interface.
This makes the use of eye gaze in a NUI challenging. Another
obstacle is the inaccuracy of gaze input. This is partly due to
hard physiological limitations, namely the one degree visual
angle covered by the fovea, the area of the retina responsible
for sharp central vision [38, 42]. This creates problems for
selecting small and closely positioned targets such as text.
Furthermore, holding the gaze, e.g., to indicate a selection
(dwell), requires a specific novel effort from the user, which
can be difficult and frustrating. In this paper we investigate a
gaze-augmented NUI for cursor positioning and text editing
with a traditional keyboard which avoids these problems.

Many users who work intensively with important pro-
ductivity applications, specifically for text input, still use
keyboard and mouse as their prime input devices. Some-
times users with different tasks or preferences choose not

1

https://doi.org/10.1145/3290605.3300433
https://doi.org/10.1145/3290605.3300433

to use those input devices and look for other viable alterna-
tives. For an experienced typist, moving the hand from the
keyboard and using a mouse for pointing & clicking hinders
the typing flow and can cause discomfort and fatigue [46].
This repetitive context switch between keyboard and mouse
is not only time-consuming but also distracts the typist from
the actual task, leading to reduced productivity [7, 34, 45].
The overuse of these pointing devices can also lead to RSI
(Repetitive Strain Injury) [6, 29]. People spending more time
using keyboard than mouse at work are at lower risk for
Carpal Tunnel Syndrome [2].

Scope: We present a novel gaze-augmented method for
text editing called ReType. It aims to facilitate the process of
editing text by removing the aforementioned context switch
between keyboard and mouse, allowing typists to make the
best use of their typing skills. ReType combines gaze with
keyboard input to replace common pointing operations; it
can be used to make small changes in text anywhere on the
screen, such as for typo correction, as well as to navigate in
the text using only gaze and keyboard input. Beside these
new operations, the keyboard can be used for text editing as
usual. A variation of navigation can be used to select text,
so that copy & paste operations can also be used as usual.
We investigate ReType by addressing the following research
questions:

RQ1 How can gaze be naturally combined with keyboard
input for text editing?

RQ2 How does ReType compare with conventional mouse
& keyboard interaction?

RQ3 How does the typing speed of a user affect ReType
compared to conventional mouse & keyboard interac-
tion?

For small text edits such as typo correction, ReTypemerges
the positioning process (within the visible text) with the
actual change process. We show that ReType offers an op-
portunity to include gaze tracking as a positioning cue in
such a way as to become second nature to the users while
they focus on the change they want to make (“automatic
ReType”). We also consider variants of ReType which rely on
more explicit, modal positioning cues (“modal ReType”), in-
cluding a variant which works without gaze (“keyboard-only
ReType”).
Correcting typos with a keyboard usually involves plac-

ing the cursor at the right location and using procedural
backspace or delete for editing. By contrast, ReType uses
a new process which we call ‘patching’ or ‘replacing’ the
typo. One can think of ReType as a metaphor of patching
over a typo with a band-aid: the user re-types some correct
characters preceding the typo (prefix), then continues with
the correct spelling in place of the erroneous characters, and
continues a little past the typo (suffix). Prefix and suffix allow

the new patch to ‘stick’ to the matching bits in the old text,
allowing ReType to locate the desired position of the patch
without mouse or cursor keys.

We evaluated the usability of the different ReType vari-
ants, comparing them against keyboard & mouse. We did
not consider using a trackpad or solely navigation keys for
cursor positioning as the mouse is more productive [5, 22].
We performed a qualitative free-use study, involving proof-
reading with a range of different text editing tasks. We also
conducted a quantitative study evaluating the central oper-
ation of ReType: positioning and editing small changes by
re-typing. We compared ReType’s ability in correcting typos
– as typical examples of small, localised changes – with that
of keyboard & mouse.

In summary, we make the following contributions:

(1) We present the design and implementation of ReType,
a novel gaze-assisted input method allowing keyboard-
only work, which uses a metaphor of changing text by
patching.

(2) We show that in ReType, gaze tracking is essential for
achieving a performance which can compete with mouse
& keyboard.

(3) We show that ReType with its patching metaphor can
benefit experienced keyboard users in particular.

2 RELATEDWORK
Jacob et al. [13] explored technical and physiological limita-
tions of gaze tracking such as eye tracker accuracy, sensor
lag and fixation jitter. These are responsible for problems
when using gaze for interaction, such as the Midas Touch
problem [11, 12]. In order to overcome these problems, gaze
interaction methods have been proposed which are tolerant
to fairly low accuracy [18, 24, 26, 31, 32, 48].
Some research explores selection mechanisms for explic-

itly given targets, such as buttons and links [24, 31, 32, 44, 48].
These approaches derive speed advantages from the limited
number of targets, but they are not suitable for fine posi-
tioning such as character-wise cursor placement in a text
editor. Ware et al. [44] proposed selection with gaze and a
physical button, noting that while this approach worked well
for larger targets, a reduced speed and increase in number
of errors were reported for smaller targets. Zhang et al. [48]
focused on improving the stability of an eye gaze cursor
using multiple techniques such as force fields, which were
suitable mainly for button-sized targets. In our workgroup
we proposed a number of two-stage selection approaches
which increase the resolution to a degree suitable for smaller
links [24, 31, 32]. The fastest technique, Actigaze [24], ap-
proaches the speed of the mouse, but is explicitly not aimed
at fine-grained positioning.

2

Gaze-enhanced input methods use existing input devices
and employ gaze to improve their usability. Zhai et al. [47]
presented MAGIC (“manual and gaze input cascaded”), the
first gaze-enhanced mouse pointing approach, where the
mouse pointer moves quickly to the user’s gaze position and
a physical mouse is used to make finer movements of the
mouse pointer. MAGIC proved to be slightly faster than the
mouse alone, with similar accuracy. The Rake Cursor [3] and
Ninja Cursors [33] use an alternative gaze-enhanced mouse
technique: the mouse controls a grid of cursors while gaze
is used to select the active cursor from within the grid.

The GUIDe (Gaze-enhanced User Interface Design) project
explored how gaze can be effectively used as an augmented
input in addition to keyboard and mouse for improving the
user interfaces for everyday computing tasks [19, 20]. They
presented practical applications for pointing & selection [18],
application switching [17] and scrolling. Fono et al. [8] pro-
posed eye pointing with either dwell time or key activation
for focusing a GUI window. Results indicated that while auto-
matic activation was slightly faster than keyboard activation,
the latter was preferred by most participants.

Kumar et al. [18] proposed EyePoint, which allows precise
pointing & clicking with gaze using magnification and a
press-release button. EyePoint allows the user to keep their
hands on the keyboard, using the keyboard essentially just
as a mouse button. However, the magnification has a high
visual impact on the user experience.

There are some approaches for using gaze input for text
based user-interfaces, with most text entry and error correc-
tion applications specifically designed for people suffering
from motor impairment. GazeTalk [9] and Dasher [40] are
examples of text entry systems. GazeTalk uses specialized
on-screen keyboards with dwell time for key activation while
Dasher lets users enter text directly using continuous point-
ing gestures. The gaze-only text entry system proposed by
Kishi et al. [15] includes support for copy & paste editing us-
ing a two-step cursor control mechanism. Both initial cursor
setting and fine adjustment are done using dwell time.

Some work focuses on increasing the typing speed for on-
screen keyboards either by adjusting dwell [25, 27] or propos-
ing virtual on-screen keyboards with novel layouts [10, 35,
43]. Some “dwell-free” typing approaches [16, 23, 30] have
been proposed to mitigate the effort and time taken by gaze
dwelling on keys. Majaranta et al. [26] presented a system for
gaze-only text editing using dynamic and static gaze menus.
A menu pops up when the user fixates on text to be edited,
offering dwell-activated buttons for editing functions such
as positioning the cursor within the text. The approach sup-
ports basic text editing (cut, copy, paste) and text formatting
(bold, italic, underline).

OverlapKeys [39] works as a software filter which focuses
specifically on overlap errors by identifying and filtering out

additional key presses. On the other hand, TrueKeys [14], an
auto-correction system, combines models of word frequency,
keyboard layout and typing error patterns to identify and
correct text automatically while typing.

3 MODAL RETYPE
The initial interaction design for ReType, which we call
“modal ReType,” is a classic temporary mode that can be acti-
vated with a hot key and added to a standard ASCII style or
WYSIWYG text editor. The state machine for modal ReType
is shown in Figure 1. A user can switch to “ReType mode”
by pressing a pre-defined hotkey (we chose the Windows
key). Pressing the Escape key exits ReType mode and returns
the editor to the same state it was in before entering ReType
mode; we will assume that the original state is the typical
editing mode of the text editor and call it the “normal mode.”
From this point a user can switch into ReType mode again.
To support ReType, the text editor has an added text field –
the ReType field – for reviewing the input entered during
ReType mode. While in ReType mode, all user input is shown
in the ReType field. We call the text shown in the ReType
field the edit string. The edit string may contain spaces, and
control keys such as backspace have their usual effect in the
ReType field.

The first defining property of ReType is that immediately
after each key stroke it performs a match of the current edit
string against the original text. The match is approximate, i.e.
it uses a measure of similarity to match text. ReType replaces
the best match in the text with the current edit string, based
on the assumption that this is the user’s intended target. If
the edit string is different from the matched text, then the
edit string is considered the desired edited text to be used
in place of the original text (i.e. resulting in a text edit). If
the edit string is an exact match with part of the text, no
modification occurs and the cursor is merely moved right
after the match (i.e. resulting in cursor positioning).
In principle this mechanism works well without any fur-

ther input in unambiguous situations, i.e. if the best approx-
imate match in the text is indeed the desired target of the
ReType edit operation. If the user is content with the current
replacement performed by ReType, then the user can con-
firm and embed this change by pressing Enter. This ends the
ReType mode, which is designed as a temporary mode active
only during the editing process, and places the cursor right
after the edited text. In this optimistic case, a first contribu-
tion of ReType lies in making a search/replace dialogue a
bit less modal by combining the find and the replace phases.
This makes ReType more attractive for positioning and small
correction tasks.

In many cases, however, the approximate match with the
edit string will not be unique, e.g. if the same word is used re-
peatedly in the text and misspelled in one place, or if several

3

Start

Press Hotkey

Press
Escape

Press Enter while
gaze on target

NORMAL MODE
RETYPE
MODE

ReType field enabled

Matches highlighted

Selection/ pointing

Gaze on
desired match

Gaze not on
desired match

Start typing
correct word

Typo corrected

Figure 1: State machine for modal ReType.

similarly spelled words are present. The key idea of ReType,
in the spirit of NUIs, is that in ambiguous cases the user’s
gaze can be used to disambiguate the user’s intention, with-
out an explicit pointing approach. Gaze is simply used as an
additional positioning cue, based on the reasonable assump-
tion that the user will look at the text she wants to modify (or
navigate to). As a result, ReType creates a synergy between
gaze input, the fact that the user’s gaze rests naturally on
the point of interest, and the approximate match of the edit
string.

Keyboard-Only ReType
The fact that the keyboard input alone gives a good posi-
tioning cue, in some cases even an unambiguous position,
leads to a natural counterposition. In the interests of a criti-
cal discussion of modal ReType, a detractor may argue that
a still rare and moderately pricey gaze tracker could be re-
placed by disambiguating between potential matches with a
go-to-next hotkey. This leads to a variant we call “keyboard-
only ReType,” which works solely with the keyboard without
having to use eye gaze or mouse input. To make a point for
ReType as a gaze-augmented interaction method, we will
show empirically that the combination of ReType with gaze
tracking is necessary to deliver good usability and compete
with the mouse. Keyboard-only ReType does not deliver the
full advantage.
The working of keyboard-only is similar to ReType with

gaze, with one difference: amongst all the potential matches
in the text, the desired match is selected by moving a high-
light marker with arrow keys instead of gaze input. The user
presses the Windows key, enters the ReType mode and types
the desired edit string (e.g. a corrected snippet of a word
with a typo) into the ReType field. Then she uses the arrow
keys (Left, Right, Up, Down) to move between the matches
found in the text file. After the correct match is highlighted,
the user presses Enter to lock the changes in the document.

Gaze vs Mouse vs Keyboard
Modal ReType Mouse & Keyboard Keyboard-only ReType

0

1000

2000

3000

4000

5000

6000

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

TA
SK

 C
O

M
P

LE
TI

O
N

 T
IM

E
(M

S)

PARTICIPANTS

Mouse & Keyboard Modal ReType Keyboard-only ReType

Figure 2: Average task completion times in milliseconds of
all pilot study participants for the three tested interaction
methods.

Pilot Study
The pilot studies played an important role in the design
ideation of the ReType prototype. We followed the approach
of “learning by doing” and performed many rounds of iter-
ative testing during the design. After the initial prototype
(modal ReType) was ready, a fully fledged pilot study was
conducted with ten participants, which helped us to gain
an overall idea of the prototype’s usability. The users were
asked to perform typo editing with eight text files containing
five typos each, using a methodology similar to the full eval-
uation described below. Three different interaction methods
were used: 1) modal ReType, 2) keyboard-only ReType, and 3)
mouse & keyboard. The mouse & keyboard editing was the
usual editing without gaze where a user clicks at the typo,
deletes the wrong characters and types the correct ones.

Figure 2 depicts the task completion times averaged over
all 40 typo correction tasks for each participant. From these
results it is evident that keyboard-only ReType was markedly
slower than the other two interaction methods. The 95%
confidence interval for the median relative ratio of the task
completion times of modal ReType and mouse & keyboard
was [0.93, 1.25], with 1 signifying equal speed. This is an
indication that modal ReType is likely not a lot slower than
mouse & keyboard. Compared to other alternatives for the
mouse such as trackpads this can already be considered a
good result. Participants’ comments and observations made
during the pilot study indicate that users were excited about
the idea of a gaze-augmented interface for text editing.

Further analysis of the results showed that a major part of
the task completion time for modal ReType was spent on the
mode switch. Supporting this, several participants pointed
out that the multiple steps required for editing with ReType
were not optimal.

This led us to the hypothesis that the ReType hotkey cre-
ated a mental load as users were not used to it in normal
text editing. As a result, we looked for an interaction design

4

Eye tracker OFF

ReType field

Typo error

Figure 3: Screenshot of text editor in normal mode. The edi-
tor behaves as usual until a ReType operation is performed.

which would avoid the mode switch. This design is presented
in the next section.

4 AUTOMATIC RETYPE
Our latest design is called “automatic ReType” as it removes
explicit mode switching. In the spirit of natural interaction,
ReType tries to detect the user’s intention to switch into Re-
Type mode and then switches to ReType mode automatically.
The most promising solution we identified is a mode switch
depending on the position of the user’s gaze.
In order to avoid interference with normal typing, there

is no mode switch if the user looks at (or near) the current
position of the cursor. Furthermore, while typing, the user
can naturally move her eyes between the keyboard and the
screen without triggering a mode switch. ReType will be
only activated if 1) the user looks away from the cursor and
2) types a string that is an approximate match with text at
(or near) the gaze position.

In order to reduce the number of unintended approximate
matches, we introduced the following strategy: for a match
to be considered, a fixed number of characters at the start of
the edit string, which we call lead characters, need to match
the characters in the text. The number of lead characters is
a configurable parameter of the ReType system. It should
not be too large; the only realistic values are 1C, i.e. a single
lead character, and 2C, i.e. two lead characters. One can also
think of this in terms of the patching metaphor: for a patch
to stick at the target position, the edit string should start
with one or two characters exactly matching the text.

Figure 3 depicts the editor in normal mode. The red eye
in the top right corner of the editor indicates that the editor
is not listening to gaze events (either the tracker is off or
not connected). A green eye in the top right corner indicates
that the editor is listening to gaze events and ready for gaze-
augmented text editing. Figure 4 depicts the editor in ReType
mode. The ReType field turns yellow to indicate that the user
has entered this mode.

Potential match

Gaze focused match
Eye tracker ON

Edit string

Figure 4: Screenshot of text editor in ReType mode. Matches
of the edit string (yellow box) in the text are highlighted.

Matching Algorithm
As discussed above, in ReType mode the user input consti-
tutes the edit string in the ReType field. This edit string is
then used to find the potential matches in the document
using an edit distance measure. All potential matches with
the lowest edit distance are immediately highlighted with a
gray background, see Figure 4.
ReType uses a one-way edit distance, as is common in

approximate string matching into a continuous text. The
distance is presented as an insert/delete edit script which
transforms the text into the edit string, because this aligns
with the preferred visualization of the edit (described in
more detail below). For example, a character inserted into
the edit string should be either a matching character or an
insert in the text. One-way edit distance means that leading
and trailing deletes are ignored (i.e. have no cost). As said
before, ReType requires the first letters in the edit string,
the lead characters, to be an exact match with the visible
text. This simplifies the calculation of potential matches and
also keeps the number of potential matches small, aiding
visualization. Consequently the matching algorithm can just
loop through the occurrences of the lead characters in the
text and compute the one-way edit distance if a match is
possible. So in contrast to a general one-way edit distance
computation, we know possible intended start points of the
match.

We use the well-known Myers’ greedy algorithm for fast
computation of diff and/or edit distance [28] with one modifi-
cation: an early termination criterion once the edit string has
been completely inserted. In the edit graph used to visualize
the Myers’ algorithm, this criterion is reached as soon as the
algorithm reaches the lower boundary of the graph. At this
point the one-way edit distance has been computed and can
be returned. Since the only change to Myers’ algorithm is
an early termination criterion, the good asymptotic runtime
properties remain.

5

Highlighting of Matches
When highlighting matches, they are shown as the text of
the edit string without changing the actual document yet, i.e.
the displayed text is showing what will happen if the ReType
operation is confirmed. Tomake the temporary changesmore
informative, inserted characters are highlighted in green, and
a character before a deleted character is highlighted in red,
indicating the positions where changes would be made, see
Figure 4. For example, if the user has just entered ’quick’
to correct a word ’qujck’, then this potential match in the
text is shown as ’quick’ (‘i’ with green highlight and ‘u’ with
red highlight). When confirming the ReType operation by
pressing Enter, then the potential match that is closest to
the gaze point (if there is one within a certain radius from
the point of gaze) gets edited according to the operation. In
ReType mode, the system always shows the match closest
to the gaze point in a dedicated colour (here with a blue
background) to indicate where the current ReType operation
will be applied once it is confirmed.

State Machine
Figure 5 illustrates how the coordination is maintained be-
tween the gaze input and the automatic mode switchover. In
normal mode a user looks at the part of the text to edit and
starts typing a correctly edited snippet of the text. This gives
the system an indication that the typing is not intended as
normal typing in the document, but that a switchover to Re-
Type mode is desired for editing. The system automatically
switches to ReType mode, and whatever the user types is
entered into the ReType field. Based on the user input in
the ReType field (i.e. the edit string), the system starts to
look for matches within the visible text. The matches get
continually updated with each new character the user types.
When the user observes the desired change being applied
to the right match, while selecting the match with gaze, she
presses Enter to confirm the change. The selected match
gets changed leaving all other matches unchanged and the
system returns to the normal mode with the modified text.
The user can now start the ReType operation again for the
next edit (or to position the cursor). Pressing Escape at any
stage while performing a ReType operation exits the ReType
mode and leaves the text unchanged. Pressing Escape right
after a ReType operation reverts the change and brings the
system back to the previous, unedited state in normal mode.

ReType for Positioning
ReType is always also performing navigation: the cursor
remains at the new position after patch. For pure position-
ing, an unaltered patch can be re-typed and confirmed with
return. Once the cursor is positioned, other editing tasks
such as keyboard-based insertion and deletion of text can be

RETYPE
MODE

ReType field enabled
Matches highlighted

Look at the
typo and keep
typing until
change
applied

Start

Look at the
typo error

Press
Escape

Press Enter while
gaze on target

NORMAL MODE

Start typing
the correct
word

Typo corrected

Press
Escape

Correction applied

Figure 5: State machine for automatic ReType.

performed normally. This is similar to the way some typists
use search functions to navigate quickly in a text.

ReType also supports text selection, which is another com-
mon text editing task which usually involves the mouse,
in a similar manner to correcting typos. Selection of a text
block in ReType is based on navigation, and hence indirectly
on patching: it involves navigating to the start position of
the desired selection, pressing a special key (we chose the
Windows key) to mark this position, navigating to the end
position of the desired selection, and finalizing the selection
by pressing Enter. This is similar to the mark-select workflow
of text selection in some text editors such as Emacs.

5 QUALITATIVE EVALUATION
A free-use study was conducted with seven participants in
order to evaluate the use of ReType as a general text edit-
ing method together with usual keyboard-based editing. We
were interested in observing participants’ behaviour and in-
teraction with the system and analyzing its usability. For this
purpose, we tried to create a natural text editing setup by
providing participants with tasks for proofreading. Two task
files (approx. 700 words each) were used: Task 1 contained
60 errors and Task 2 contained 80 errors. A mix of typical
types of errors was used, including typos, incorrect words,
misplaced text blocks, incorrect text blocks, and missing text.

Procedure
The session started with a demonstration of both ReType
variants, modal and automatic ReType. Participants were
given several minutes to become familiar with each of them
and choose one of the variants for proofreading the texts,
depending on their preference. Since the focus of study was
on qualitative aspects of usability, we did not ask partici-
pants to be as fast as possible; instead, they were asked to
correct the text freely in their own time. It was observed that
participants spent about 15-20 mins on each task. The study

6

session was followed by a semi-structured interview. Data
was also collected from observation of the study sessions.

Results
Variant Preference. We observed that skilled typists mostly
chose automatic ReType as they felt it was more natural and
intuitive, while average typists preferred modal ReType as
they felt it gave them more control. Two participants who
chose modal ReType stated that with more practice they
would prefer automatic ReType because of its “naturalness.”

Ease of Use. Three participants said ReType required less
effort thanmouse & keyboard and was therefore easier to use.
The other four participants mentioned that ReType required
some initial learning; however, after using ReType for a few
minutes, they were able to perform editing tasks quickly
and efficiently. Three participants were able to complete the
second task faster than the first task while making very few
mistakes, even though the second task contained more errors
than the first. The other four participants completed both
tasks in roughly the same time.

Perceived Speed. Four participants felt they were able to com-
plete the tasks faster with ReType than they would have
with mouse & keyboard, while maintaining their usual key-
board typing rhythm. Two were uncertain whether ReType
or mouse & keyboard were faster. One found ReType slower.

Usage Intentions. All participants were inclined towards us-
ing ReType in their own text editing work if it were avail-
able. Five participants said they would definitely use ReType,
while two said they would consider it after more practice.

Is Keyboard-Mouse Switch a Problem? All participants con-
firmed that they find the hand switch between keyboard and
mouse problematic, with five participants calling it a “hassle.”
When asked what they do to avoid it, they said they used
keyboard shortcuts, arrow keys, and find/replace functions.

Overall Experience. Two participants mentioned ReType’s
“intuitiveness” in moving the cursor within the visible text.
Two most liked not having to move their hands between
keyboard and mouse. Text selection, highlighting and typo
correction in ReType were also mentioned positively. Six
said they felt no fatigue when using ReType; one reported
fatigue on the same level as with mouse & keyboard.

6 QUANTITATIVE EVALUATION
We conducted a quantitative experimental study in order
to understand the promising qualitative results in more de-
tail. At the heart of ReType use, underlying all other oper-
ations, is the “patching” operation; therefore in this study
we focused exclusively on patching of small text segments

through re-typing, using words with typos as representa-
tive examples. We compared automatic ReType against the
mouse & keyboard, choosing the mouse as the control point-
ing device in line with other studies [8, 18, 24, 36] in the
field, for comparability with the literature. Previous results
show that keyboard-only ReType performed a lot worse than
gaze-augmented ReType. Therefore we did not consider it
further.

Methodology
The first independent variable of the comparative study was
Method. It had two levels, ReType and Mouse, and used a
within-participant design. The order of the levels was coun-
terbalanced to compensate for order bias and training ef-
fects. In order to gain a differentiated insight into ReType,
we considered a second independent variable, Lead Char-
acters, i.e. the number of preceding characters required for
a ReType operation to start, with two levels 1C (single pre-
ceding character) and 2C (two preceding characters). We
considered it better to expose every participant only to one
Lead Characters configuration as it may have been confus-
ing otherwise. We therefore investigated this variable using
a between-participant design, dividing our 24 participants
into two groups of 12. Participants were pseudo-randomly
assigned to groups in a way which would balance groups by
typing skill. An overview of the four conditions formed by
the independent variables is shown in Table 2. For further
analysis, we considered Error Type as a third independent
variable, i.e. the type of error (typo) a user corrected, with
two levels, Single (single error with one affected letter) and
Multiple (combination of different types of error and/or mul-
tiple affected letters), see Table 1.
The main dependent variables measured were the task

completion time, the number of errors (accuracy), System
Usability Scale (SUS) scores [4] and a preference ranking. Us-
ability was further measured with additional questionnaires
based on a five-point Likert scale and including questions
related to specific characteristics of each method. The typing
speed of each participant was measured as a covariate. Two
variants of task completion time were considered: operating
time and motor time. Operating time (‘op time’) is the overall
time spent in correcting a typo. It includes think time, which
is the time a participant spends in mental preparations such
as identifying the typo and planning actions to be taken,
before performing any motor action in the typo correction
process. Think time was measured as the time between the
instant one typo was corrected and the instant a motor ac-
tion was taken to correct the following typo. Motor time is
the time from the first to the last motor action a participant
takes to correct a typo. As a result, operating time is the
sum of think time and motor time. In the following, we use
the following terms for ReType task completion times: RN

7

for ReType motor time and RT for ReType operating time.
Similarly, for Mouse MN is used for motor time and MT for
operating time. The letters T and N indicate whether think
time is considered (T) or not (N).

Apparatus. All experiments were conducted on a 14 inch,
2.3 GHz HP laptop with Intel Core i5-6200U processor and
1366×768 resolution. The laptop was configured with the
Windows 7 environment (default settings), using a Dell op-
tical mouse and a Tobii 4C gaze tracker. The ReType editor
was developed in Java. Identical experimental equipment and
settings were used for all conditions. All task text files were
small enough to be completely visible in the editor without
scrolling. Gaze, key press and mouse events were recorded
automatically for accurate measurement of task completion
times.

Participants. 24 (17 men, 7 women) participants were re-
cruited, aged from 21 to 38 years with a variety of ethnic-
ities and from a range of disciplines including Computer
Science, Engineering and Psychology. All were regular com-
puter users, using computers between two and ten hours per
day and reading English text for between two and twelve
hours per day. The typing speeds recorded for the partici-
pants were between 25 and 83 WPM. Ten participants wore
either glasses or contact lenses of varying strengths. Eight
participants had prior experience with gaze tracking.

Task. For each method participants were given the same five
texts, which contained six typos each, resulting in each par-
ticipant editing 30 typos in total. The five texts were taken
from Wikipedia and typos were introduced artificially. The
density of typos is relatively high for reasons of practical-
ity in administering the study. The typos were chosen for
representativeness to cover all positions in a word as well
as covering complex misspellings, a mix of incorrect letters,
additional letters, missing letters, reverse order of letters or a
combination of these. Table 1 gives an overview of the cate-
gories of typos used in the study. In order to reduce seek time
for the typos, the open source Spell Check library was used
to highlight the incorrect words in the text file; it was not
used to perform the actual correction. As we want to mea-
sure interaction time and accuracy, and not a participant’s
skill in correcting spelling mistakes, all participants were
provided with printouts of the task text files before the start
of each task. These printouts showed each typo highlighted
and corrected, so that the participant did not have to think
much about the correct spelling while interacting with the
interface.

Procedure. The procedure is illustrated in Figure 6. After
being comfortably seated in an adjustable chair, participants
were first asked to fill out a demographics questionnaire,
followed by a one-minute typing speed test. Participants

Table 1: Typo categories (error type and letters affected)with
frequencies.

Type of Error 1 letter 2 letters

Incorrect 5 1
Additional 5 1
Missing 4 2
Order 6 -

Additional + Missing - 3
Order + Incorrect - 1
Order + Missing - 2

Figure 6: Procedure used in the quantitative evaluation.

were then briefed about the nature of the experiment and
were familiarized with the input methods, editor functions
and experimental tasks. The gaze tracker was calibrated
for each participant using the standard Tobii Eye Tracking
Core software. Participants were instructed to correct typos
quickly and accurately. For each condition, we had a pre-task
training where participants were trained on the text before
the actual measurement.

After their interaction in each condition, participants were
asked to fill out the SUS and additional usability question-
naires. The experiment concluded with the participants fill-
ing out a post-experiment questionnaire where they ranked
the input methods based on their preference and provided
comments explaining the ranking. The experiment took ap-
proximately 60-70 minutes for each participant.

8

Table 2: Task completion times (milliseconds,M ± SD).

Method Lead Characters n Op time Motor time

ReType 1C 12 3070.92±591.64 1878.58±461.31
2C 12 3696.92±807.69 2102.42±668.05

Mouse 1C 12 3198.50±504.80 2803.50±524.48
2C 12 3262.58±432.13 2771.92±356.17

Results
We validated that the data satisfies the assumptions of an
analysis of variance (ANOVA), such as normality of the de-
pendent variables and homoscedacity. All tests for signifi-
cance were made at the α = 0.05 level. The error bars in the
graphs show the 95% confidence intervals of the means.

Task Completion Time. The results for average operating
time and motor time across all typos are summarized in Ta-
ble 2 and illustrated in Figure 7. A two-way within-subjects
ANOVA was conducted to test the influence of Method and
Lead Characters on average op time. The main effects for
Method (F (1, 22) = 1.44,p = .24) and Lead Characters
(F (1, 22) = 2.72,p = .11) were not significant. However, the
interaction effect was significant (F (1, 22) = 4.82,p = .03).
An independent samples t-test showed a significant differ-
ence in ReType 1C and 2C conditions (t(22) = −2.17,p = .04)
with a ‘large’ effect size (Cohen’s d > 0.8). The results in-
dicate that ReType with 1C is notably faster than with 2C
(see Figure 7a). Therefore we focus our analysis on the more
promising 1C.
A two-way within-subjects ANOVA was conducted to

test the influence of Method and Lead Characters on aver-
age motor time. The main effect for Method was significant
(F (1, 22) = 61.22,p < .001) but the main effect for Lead
Characters (F (1, 22) = 0.27,p = .60) and the interaction
effect (F (1, 22) = 1.57,p = 0.22) were not significant. Post
hoc t-tests with Bonferroni correction showed a significant
difference between ReType motor time and Mouse for 1C
(t(11) = −8.06,p < .001) and 2C (t(11) = −3.98,p < .01)
with a ‘large’ effect size (both Cohen’s d > 1). These results
show that ReType motor time is faster than Mouse for both
1C and 2C conditions (see Figure 7b).

The frequency distributions of task completion times for
the promising ReType 1C condition and Mouse are shown in
Figure 8. ReType was faster than Mouse (Figure 9); however,
a paired samples t-test comparing average op time (ReType
(RT) and Mouse (MT)) for 1C was not significant (t(11) =
−0.84,p = 0.42). A paired samples t-test comparing average
motor time (ReType (RN) and Mouse (MN)) for 1C showed
that ReType was significantly faster than Mouse (t(11) =
−8.06,p < .001) with a ‘large’ effect size (Cohen’s d = 2.3).

Lead Characters

Av
er

ag
e

op
 ti

m
e

(m
s)

2600
2800
3000
3200
3400
3600
3800
4000
4200

1C 2C

ReType Mouse

(a) Operating time

Lead Characters

Av
er

ag
e

m
ot

or
 ti

m
e

(m
s)

1600
1800
2000
2200
2400
2600
2800
3000
3200

1C 2C

ReType Mouse

(b) Motor time

Figure 7: Comparison of ReType and Mouse a) operating
time, and b) motor time for 1C and 2C conditions.

Effect of Error Type. The results for average op time and
motor time for Error Type S (single affected letter) and M
(multiple affected letters) are summarized in Table 3 and
illustrated in Figure 10. A two-way within-subjects ANOVA
was conducted to test the influence of Method and Error
Type on average op time (Figure 10a). The main effect for
Method (F (1, 28) = 0.004,p = .99) was not significant. The
main effect for Error Type (F (1, 28) = 39.36,p < .001) and the
interaction effect (F (1, 28) = 21.34,p < .001) were significant.
A paired samples t-test comparing average op time of ReType
(RT) and Mouse (MT) for Error Type M was not significant
(t(9) = −1.84,p = 0.09).

A two-way within-subjects ANOVA was conducted to test
the influence of Method and Error Type on average motor
time (Figure 10b). The main effect for Method was significant
(F (1, 28) = 97.95,p < .001), with ReType faster than Mouse.
The main effect for Error Type (F (1, 28) = 41.21,p < .001)
and the interaction effect (F (1, 28) = 27.89,p < .001) were
also significant. A paired samples t-test comparing average
motor time (ReType (RN) and Mouse (MN)) for Error Type
M showed that ReType was significantly faster than Mouse
(t(9) = −6.04,p < .001) with a ‘large’ effect size (Cohen’s d
= 1.9).

Influence of Typing Speed. We conducted a Pearson correla-
tion analysis on ReType and Mouse task completion times
(op times RT/MT and motor times RN/MN) with typing
speed (WPM), which showed significant correlations with
RT (r = −0.65,p < .001), RN (r = −0.72,p < .001), MT
(r = −0.58,p = .003) and MN (r = −0.67,p < .001). A
simple linear regression analysis showed that there is a sig-
nificant effect of typing speed on ReType op time (RT) and on
Mouse op time (MT). A significant regression equation for RT
5096 − 34.47 WPM (F (1, 22) = 15.94,p < .001,R2 = 0.42) in-
dicates that typing speed is a significant predictor. Similarly,
a significant regression equation for MT 4160 − 18.72 WPM
(F (1, 22) = 11.30,p = .003,R2 = 0.34) indicates that typing
speed is a significant predictor. Looking only at ReType with

9

0 2000 4000 6000 8000 10000

(a) ReType motor time (RN)

0
50

100

F
re

qu
en

cy

0 2000 4000 6000 8000 10000

(b) Mouse motor time (MN)

0
50

100

F
re

qu
en

cy

0 2000 4000 6000 8000 10000

(c) ReType op time (RT)

0
50

100

F
re

qu
en

cy

0 2000 4000 6000 8000 10000

(d) Mouse op time (MT)

0
50

100

F
re

qu
en

cy

Figure 8: Frequency distributions of task completion times
in milliseconds for ReType 1C and Mouse.

Method

Av
er

ag
e

op
 ti

m
e

(m
s)

2800

2900

3000

3100

3200

3300

3400

3500

Average RT Average MT

(a) Operating time

Method

Av
er

ag
e

m
ot

or
 ti

m
e

(m
s)

1600

1800

2000

2200

2400

2600

2800

3000

Average RN Average MN

(b) Motor time

Figure 9: Comparison of a) ReType op time (RT) and Mouse
op time (MT), and b) ReType motor time (RN) and Mouse
motor time (MN) for the 1C condition.

Table 3: Task completion times (milliseconds,M ± SD).

Method Error Type n Op time Motor time

ReType M 10 3832.90±488.41 2431.60±433.99
S 20 3159.60±358.00 1769.95±310.30

Mouse M 10 4320.00±950.29 3918.80±967.95
S 20 2686.05±456.03 2222.20±471.34

1C, a significant regression equation for RT 4373 − 25.86
WPM (F (1, 10) = 5.75,p = .04,R2 = 0.37), indicates typing
speed is also a significant predictor for the 1C condition. In
summary, typing speed reduces op time more for ReType
than for Mouse (β = −34.47 and β = −25.86 vs. β = −18.72),
which indicates that ReType allows typists to make better
use of their skills than Mouse.

Accuracy. ReType errors were counted if the user made an
unintentional (incorrect) change in one of the target words

Typo Type

Av
er

ag
e

op
 ti

m
e

(m
s)

2500

3000

3500

4000

4500

5000

Multiple Single

ReType Mouse

(a) Operating time

Typo Type

Av
er

ag
e

m
ot

or
 ti

m
e

(m
s)

1500

2500

3500

4500

Multiple Single

ReType Mouse

(b) Motor time

Figure 10: Comparison of ReType and Mouse a) operating
time, and b) motor time for Mutiple (M) and Single (S) error
type conditions.

Method

SU
S

Sc
or

e
(%

)

72

74

76

78

80

82

84

ReType SUS Mouse SUS

(a) SUS scores

Method

Ra
nk

in
g

Sc
or

e

0.8

1

1.2

1.4

1.6

1.8

2

2.2

ReType Rank Mouse Rank

(b) Preference ranks

Figure 11: Comparison of ReType and Mouse a) SUS scores
and b) preference rankings.

or anywhere else while doing the correction. ReType had an
error rate of 1.80% (13 errors) vs. 0.42% (3 errors) for Mouse.
Considering the 1C and 2C groups separately, the error rate
for ReType 1C was 0.83% (3 errors) and that of ReType 2C
was 2.78% (10 errors). We observed that the corrections at
the beginning of a word were particularly error-prone with
2C.

Usability. A paired samples t-test was conducted to compare
the SUS scores (%) for ReType and Mouse across all 24 par-
ticipants, illustrated in Figure 11a. ReType (M = 78.02, SD =
12.62) scored higher than theMouse (M = 76.87, SD = 11.96),
but the difference was not significant (t(23) = 0.32,p = 0.75).
A paired Wilcoxon Signed-Rank test showed that partici-
pants rated their enjoyment of ReType (M = 4.67, SD = 0.57)
significantly higher than that of Mouse (M = 3.71, SD =
1.16),W = 50,p < .01, and that participants felt they “had to
type too much to correct typos” with Mouse (M = 3.13, SD =
0.99), more than with ReType (M = 2.00, SD = 1.14),W =
30.5,p < .01. One-sample Wilcoxon signed-rank tests indi-
cate that participants agreed (median score greater than 4
on a 5-point Likert scale) that with ReType “it was easy to
see what changes will be made in the text” (M = 4.38, SD =
0.58,V = 60,p < .01), “it was easy to select the word [they]

10

wanted” (M = 4.42, SD = 0.65,V = 90,p < .01), that they
“could relate to the metaphor of patching” (M = 4.63, SD =
0.58,V = 144,p < .001) and that they are “willing to type
a bit more” if it saves them switching between keyboard
and mouse (M = 4.46, SD = 0.78,V = 112,p = .01). A one-
sample Wilcoxon signed-rank test shows that participants
tended to agree (median greater than mid-scale point 3) that
they had “to make too many switches between keyboard and
mouse to correct typos” when using Mouse (M = 4.13, SD =
0.74,V = 190,p < .001), and that “correcting typos just with
the keyboard using ReType requires less effort than using a
context menu with suggested spelling corrections with the
mouse” (M = 4.04, SD = 1.20,V = 240.5,p = .001).

Preference. Figure 11b illustrates the participants’ preference
rankings. Twenty-two participants preferred ReType and
two participants preferred the Mouse. A Wilcoxon Signed-
Rank test on the preference rankings showed that ReType
(M = 1.17, SD = 0.38) was ranked significantly better than
Mouse (M = 1.83, SD = 0.38),W = 120,p < .01. A one-
sample Wilcoxon signed-rank test shows that participants
tended to agree (median greater than mid-scale point 3) that
they “prefer using ReType over using keyboard andmouse for
correcting typos” (M = 3.92, SD = 1.06,V = 223,p < .001).

Qualitative Results. The overall response to ReType was very
positive (e.g. “Once I got going with ReType, I found it quite
sensible and easy to use on the whole. I like both systems, but
I could certainly see myself happily using ReType a lot.”, “I
like to be able to practice my spelling rather than rely on the
computer to tell me the spelling – this is a benefit of ReType.”).
Ten participants used words such as “easy to use” or “effort-
less” and seven participants used words such as “saves time”
or “fast” when describing their experience. Seven partici-
pants mentioned that ReType was “accurate” and “efficient”
in identifying a typo’s location. Five other participants said
that they found ReType very “intuitive” and that it worked
well for correcting typos. Five participants reported that
they enjoyed correcting typos with ReType. Six participants
agreed that with more practice, ReType will perform better
than Mouse. Four participants pointed out that they were
more comfortable with Mouse as they had years of experi-
ence with it, and that they would need more practice with
ReType to reach the same level of proficiency (e.g. “Given
that I have been using mouse and keyboard to type it feels more
natural. I think I might change my mind after using ReType for
more time.”). All in all, participants liked the fact that ReType
saves them manually placing the cursor and considered it as
a viable text editing alternative.

7 DISCUSSION
The results indicate that it is possible to combine gaze and
keyboard for text editing, in particular for small changes such

as typos, but that it requires some consideration to make
this ‘natural’ (RQ1). In terms of task completion time, modal
ReType performed worse than the non-modal, ‘automatic’
ReType as it required a start signal (key press) which was not
part of the typical text editing process. Similarly, using two
lead character for matching target text (2C) did not work as
well as using just one (1C). This is most likely because hav-
ing to type additional characters for patching deviates from
the typical editing process and may introduce friction, and
because choosing the characters created additional mental
load.

Looking only at motor time, automatic ReType was clearly
superior to Mouse for small changes (RQ2). However, while
the average op time of automatic ReType with 1C came out
better than Mouse, there was no clear superiority. It is likely
that the limited experience participants had with ReType, as
compared to the Mouse, contributed to a longer think time.
Based on comments, many participants believed that they
could become more proficient with ReType given more prac-
tice. Overall, the responses indicate that ReType’s patching
metaphor was intuitive for most participants, even though
they were not used to it.

The regression analysis indicates that higher typing speeds
reduce op time more for ReType than for Mouse, making Re-
Type particularly attractive for typists (RQ3). The regression
equations predict that from about 30 WPM upwards, users
will be faster with ReType than with Mouse, with average op
time for correcting typos below 3600ms. This is supported by
observations that skilled typists became fluent with ReType
much more quickly than average typists. However, although
several participants were skilled typists, the effect on op
time was not strong enough to be statistically significant
given the limited sample size. Based on the results, the dif-
ference between ReType 1C and Mouse would likely become
significant with more ReType training.

Limitations
The study presented has some limitations. It was not possible
to give participants extensive training with ReType during
the experiment, which may have disadvantaged it relative to
Mouse. Future work could consider the use of ReType over
a longer period of time. Moreover, there may have been a
novelty bias in the responses as many participants had not
used gaze tracking before. Since it was not feasible to hide
from the participants that the experimenter had an interest
in ReType, social desirability bias may have influenced the
subjective results, in particular the ranking. This was miti-
gated through the use of standardised, neutrally formulated
participant instructions, objective measures (task comple-
tion times, accuracy), additional Likert-scale questions to
elicit differentiated feedback, and by encouraging genuine
feedback. It is likely the study was underpowered to detect

11

differences in speed between ReType 1C and Mouse; future
studies investigating these differences should focus on the
more promising ReType 1C.

In this study ReType was used with texts which fitted on a
single screen for reasons of study design (reducing parameter
space). However, the ReType editor supports editing of texts
that are larger than one screen. Many proficient keyboard
users are already able to navigate quickly across screens
using the ‘page up’ and ‘page down’ keys. Furthermore, gaze-
supported techniques such as gaze scrolling could be used.
In particular, ReType could be extended to show potential
off-screen matches of re-typed words of the text together
with some context, e.g. at the bottom of the text editor, so
that these can be selected by gaze and navigated to as usual.

8 CONCLUSIONS
We have presented the design and evaluation of ReType, a
gaze-assisted text editing technique for keyboard, which can
be used to make changes quickly in text shown on the screen.
Our results show that gaze is crucial for the user experience
of ReType, and that once gaze is available, ReType achieves
a high user satisfaction. In order to explore the performance
potentials, we have implemented automatic ReType, where
positioning happens automatically once the system has in-
ferred that the user wants to edit at a particular position.
We have ring-fenced the parameter space for ReType which
delivers the best results for the user by showing that a sin-
gle lead character (1C) allows good positioning and ensures
fast and reasonably accurate interaction. ReType received
positive feedback for small text changes such as correcting
typos, as well as in the context of more general text editing,
involving text insertion, removal, selection and cut & paste.

ReType is notable as it achieves improvements in particu-
lar for professional and already fluent keyboard users. In this
sense ReType targets different scenarios than many other
gaze interaction techniques which are aimed at situations
where a user needs to replace an existing interaction tech-
nique. A key conclusion of this study is that users who care
about typing speed and efficiency in their work felt that Re-
Type, and therefore the use of gaze, offers an improvement.
They considered it plausible that they would use it frequently
if it were available.
Future work could investigate the use of ReType ‘in the

wild,’ and its performance after usage over a longer time.
Extensions of ReType to support gaze-augmented navigation
in longer documents also appear plausible and should be
explored further.

REFERENCES
[1] Michael Ashmore, Andrew T Duchowski, and Garth Shoemaker. 2005.

Efficient eye pointing with a fisheye lens. In Proceedings of Graphics
Interface 2005. Canadian Human-Computer Communications Society,
203–210.

[2] Isam Atroshi, Christina Gummesson, Ewald Ornstein, Ragnar Johns-
son, and Jonas Ranstam. 2007. Carpal tunnel syndrome and keyboard
use at work: A population-based study. Arthritis & Rheumatism: Of-
ficial Journal of the American College of Rheumatology 56, 11 (2007),
3620–3625.

[3] Renaud Blanch and Michaël Ortega. 2009. Rake cursor: improving
pointing performance with concurrent input channels. In Proceedings
of the CHI Conference on Human Factors in Computing Systems. ACM,
1415–1418.

[4] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability
Evaluation in Industry 189, 194 (1996), 4–7.

[5] Stuart K Card, William K English, and Betty J Burr. 1978. Evaluation
of mouse, rate-controlled isometric joystick, step keys, and text keys
for text selection on a CRT. Ergonomics 21, 8 (1978), 601–613.

[6] Suparna Damany and Jack Bellis. 2000. It’s not carpal tunnel syndrome!:
RSI theory and therapy for computer professionals. Jack Bellis.

[7] Franck Dernoncourt. 2014. Replacing the computer mouse. arXiv
preprint arXiv:1410.5907 (2014).

[8] David Fono and Roel Vertegaal. 2005. EyeWindows: evaluation of
eye-controlled zooming windows for focus selection. In Proceedings
of the CHI Conference on Human Factors in Computing Systems. ACM,
151–160.

[9] John Paulin Hansen, Anders Sewerin Johansen, Dan Witzner Hansen,
Kenji Itoh, and Satoru Mashino. 2003. Command without a click:
Dwell time typing by mouse and gaze selections. In Proceedings of
Human-Computer Interaction–INTERACT. 121–128.

[10] John Paulin Hansen, Kristian Tørning, Anders Sewerin Johansen, Kenji
Itoh, and Hirotaka Aoki. 2004. Gaze typing compared with input by
head and hand. In Proceedings of the 2004 Symposium on Eye Tracking
Research & Applications. ACM, 131–138.

[11] Robert Jacob and Sophie Stellmach. 2016. What you look at is what
you get: gaze-based user interfaces. Interactions 23, 5 (2016), 62–65.

[12] Robert JK Jacob. 1991. The use of eye movements in human-computer
interaction techniques: what you look at is what you get. ACM Trans-
actions on Information Systems (TOIS) 9, 2 (1991), 152–169.

[13] Robert J Jacob and Keith S Karn. 2003. Eye tracking in human-computer
interaction and usability research: Ready to deliver the promises. Mind
2, 3 (2003), 4.

[14] Shaun K Kane, Jacob O Wobbrock, Mark Harniss, and Kurt L Johnson.
2008. TrueKeys: identifying and correcting typing errors for peo-
ple with motor impairments. In Proceedings of the 13th International
Conference on Intelligent User Interfaces. ACM, 349–352.

[15] Reo Kishi and Takahiro Hayashi. 2015. Effective gazewriting with sup-
port of text copy and paste. In IEEE/ACIS 14th International Conference
on Computer and Information Science (ICIS). IEEE, 125–130.

[16] Per Ola Kristensson and Keith Vertanen. 2012. The potential of dwell-
free eye-typing for fast assistive gaze communication. In Proceedings
of the Symposium on Eye Tracking Research & Applications. ACM, 241–
244.

[17] Manu Kumar, Andreas Paepcke, and Terry Winograd. 2007. EyeExpose:
Switching Applications with Your Eyes. Technical Report CSTR 2007-02.
Stanford University.

[18] Manu Kumar, Andreas Paepcke, and Terry Winograd. 2007. EyePoint:
practical pointing and selection using gaze and keyboard. In Proceed-
ings of the CHI Conference on Human Factors in Computing Systems.
ACM, 421–430.

[19] Manu Kumar and Terry Winograd. 2007. GUIDe: gaze-enhanced UI
design. In CHI’07 Extended Abstracts on Human Factors in Computing
Systems. ACM, 1977–1982.

[20] Manu Kumar, Terry Winograd, Andreas Paepcke, and Jeff Klingner.
2007. Gaze-enhanced user interface design. Technical Report. Stanford
InfoLab.

12

[21] Chris Lankford. 2000. Effective eye-gaze input into windows. In Pro-
ceedings of the 2000 Symposium on Eye Tracking Research &Applications.
ACM, 23–27.

[22] Michael YC Lin, Justin G Young, and Jack T Dennerlein. 2015. Eval-
uating the effect of four different pointing device designs on upper
extremity posture and muscle activity during mousing tasks. Applied
Ergonomics 47 (2015), 259–264.

[23] Yi Liu, Chi Zhang, Chonho Lee, Bu-Sung Lee, and Alex Qiang Chen.
2015. Gazetry: Swipe text typing using gaze. In Proceedings of the
Annual Meeting of the Australian Special Interest Group for Computer
Human Interaction. ACM, 192–196.

[24] Christof Lutteroth, Moiz Penkar, and Gerald Weber. 2015. Gaze vs.
Mouse: a fast and accurate gaze-only click alternative. In Proceed-
ings of the 28th Annual ACM Symposium on User Interface Software &
Technology. ACM, 385–394.

[25] Päivi Majaranta, Ulla-Kaija Ahola, and Oleg Špakov. 2009. Fast gaze
typing with an adjustable dwell time. In Proceedings of the CHI Confer-
ence on Human Factors in Computing Systems. ACM, 357–360.

[26] Päivi Majaranta, Niina Majaranta, Gintautas Daunys, and Oleg Spakov.
2009. Text editing by gaze: static vs. dynamic menus. In Proceedings of
the 5th Conference on Communication by Gaze Interaction (COGAIN).
19–24.

[27] Martez E Mott, Shane Williams, Jacob O Wobbrock, and Mered-
ith Ringel Morris. 2017. Improving dwell-based gaze typing with
dynamic, cascading dwell times. In Proceedings of the CHI Conference
on Human Factors in Computing Systems. ACM, 2558–2570.

[28] Eugene W. Myers. 1986. An O(ND) Difference Algorithm and Its
Variations. Algorithmica 1 (1986), 251–266.

[29] Emil F Pascarelli and Deborah Quilter. 1994. Repetitive strain injury: a
computer user’s guide. Wiley.

[30] Diogo Pedrosa, Maria Da Graça Pimentel, Amy Wright, and Khai N
Truong. 2015. Filteryedping: design challenges and user performance
of dwell-free eye typing. ACM Transactions on Accessible Computing
(TACCESS) 6, 1 (2015), 3.

[31] Abdul Moiz Penkar, Christof Lutteroth, and Gerald Weber. 2012. De-
signing for the eye: design parameters for dwell in gaze interaction. In
Proceedings of the 24th Australian Computer-Human Interaction Con-
ference. ACM, 479–488.

[32] Abdul Moiz Penkar, Christof Lutteroth, and Gerald Weber. 2013. Eyes
only: navigating hypertext with gaze. In IFIP Conference on Human-
Computer Interaction (INTERACT). Springer, 153–169.

[33] Kari-Jouko Räihä and Oleg Špakov. 2009. Disambiguating ninja cursors
with eye gaze. In Proceedings of the CHI Conference on Human Factors
in Computing Systems. ACM, 1411–1414.

[34] Julian Ramos, Zhen Li, Johana Rosas, Nikola Banovic, Jennifer Mankoff,
and Anind Dey. 2016. Keyboard surface interaction: making the key-
board into a pointing device. arXiv preprint arXiv:1601.04029 (2016).

[35] Sayan Sarcar, Prateek Panwar, and Tuhin Chakraborty. 2013. EyeK: an
efficient dwell-free eye gaze-based text entry system. In Proceedings of
the 11th Asia Pacific Conference on Computer Human Interaction. ACM,
215–220.

[36] Linda E Sibert and Robert JK Jacob. 2000. Evaluation of eye gaze
interaction. In Proceedings of the CHI Conference on Human Factors in
Computing Systems. ACM, 281–288.

[37] Dave M Stampe and Eyal M Reingold. 1995. Selection by looking: a
novel computer interface and its application to psychological research.
Studies in Visual Information Processing 6 (1995), 467–478.

[38] Sophie Stellmach and Raimund Dachselt. 2012. Look & touch: gaze-
supported target acquisition. In Proceedings of the CHI Conference on
Human Factors in Computing Systems. ACM, 2981–2990.

[39] Shari Trewin. 2002. An invisible keyguard. In Proceedings of the Fifth
International ACMConference on Assistive Technologies. ACM, 143–149.

[40] Outi Tuisku, Päivi Majaranta, Poika Isokoski, and Kari-Jouko Räihä.
2008. Now Dasher! Dash away!: longitudinal study of fast text entry
by eye gaze. In Proceedings of the 2008 Symposium on Eye Tracking
Research & Applications. ACM, 19–26.

[41] Boris Velichkovsky, Andreas Sprenger, and Pieter Unema. 1997. To-
wards gaze-mediated interaction: collecting solutions of the “Midas
touch problem”. InHuman-Computer Interaction (INTERACT). Springer,
509–516.

[42] Brian A Wandell. 1995. Foundations of vision. Sinauer Associates.
[43] David J Ward and David JC MacKay. 2002. Artificial intelligence: fast

hands-free writing by gaze direction. Nature 418, 6900 (2002), 838–838.
[44] Colin Ware and Harutune H Mikaelian. 1987. An evaluation of an

eye tracker as a device for computer input. In ACM SIGCHI Bulletin,
Vol. 17. ACM, 183–188.

[45] Wayne Westerman, John G Elias, and Alan Hedge. 2001. Multi-touch:
a new tactile 2-d gesture interface for human-computer interaction.
In Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, Vol. 45. SAGE Publications, 632–636.

[46] Victoria Woods, Sarah Hastings, Peter Buckle, and Roger Haslam. 2002.
Ergonomics of using a mouse or other non-keyboard input device. Health
and Safety Executive.

[47] Shumin Zhai, Carlos Morimoto, and Steven Ihde. 1999. Manual and
gaze input cascaded (MAGIC) pointing. In Proceedings of the CHI Con-
ference on Human Factors in Computing Systems. ACM, 246–253.

[48] Xinyong Zhang, Xiangshi Ren, and Hongbin Zha. 2008. Improving
eye cursor’s stability for eye pointing tasks. In Proceedings of the CHI
Conference on Human Factors in Computing Systems. ACM, 525–534.

13

	Abstract
	1 Introduction
	2 Related Work
	3 Modal ReType
	Keyboard-Only ReType
	Pilot Study

	4 Automatic ReType
	Matching Algorithm
	Highlighting of Matches
	State Machine
	ReType for Positioning

	5 Qualitative Evaluation
	Procedure
	Results

	6 Quantitative Evaluation
	Methodology
	Results

	7 Discussion
	Limitations

	8 Conclusions
	References

