
"If you want, I can store the encrypted password."
A Password-Storage Field Study with

Freelance Developers
Alena Naiakshina
University of Bonn

naiakshi@cs.uni-bonn.de

Anastasia Danilova
University of Bonn

danilova@cs.uni-bonn.de

Eva Gerlitz
University of Bonn
gerlitz@uni-bonn.de

Emanuel von Zezschwitz
University of Bonn, Fraunhofer FKIE

zezschwitz@cs.uni-bonn.de

Matthew Smith
University of Bonn, Fraunhofer FKIE

smith@cs.uni-bonn.de

ABSTRACT
In 2017 and 2018, Naiakshina et al. [21, 22] studied in a lab
setting whether computer science students need to be told
to write code that stores passwords securely. The authors’
results showed that, without explicit prompting, none of the
students implemented secure password storage. When asked
about this oversight, a common answer was that they would
have implemented secure storage - if they were creating code
for a company.
To shed light on this possible confusion, we conducted a

mixed-methods field study with developers. We hired free-
lance developers online and gave them a similar password
storage task followed by a questionnaire to gain additional
insights into their work. From our research, we offer two
contributions. First of all, we reveal that, similar to the stu-
dents, freelancers do not store passwords securely unless
prompted, they have misconceptions about secure password
storage, and they use outdated methods. Secondly, we dis-
cuss the methodological implications of using freelancers
and students in developer studies.

CCS CONCEPTS
• Security and privacy→ Usability in security and pri-
vacy; •Human-centered computing→ Empirical studies
in HCI .

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5970-2/19/05.
https://doi.org/10.1145/3290605.3300370

KEYWORDS
Security Developer Study; Developer Password Study; Field
Study; Usable Security and Privacy

ACM Reference Format:
Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von
Zezschwitz, and Matthew Smith. 2019. "If you want, I can store the
encrypted password." A Password-Storage Field Study with Free-
lance Developers. In CHI Conference on Human Factors in Computing
Systems Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland
UK. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3290605.3300370

1 INTRODUCTION
In recent years, many researchers have investigated end-user
password creation, password use and knowledge [7, 10, 16,
27, 31, 33–35, 37], as well as password composition policies
and their effects [19, 20, 25, 28]. Due to end-users’ weak
password habits (e.g., password reuse) [17, 29], attackers can
focus on services with low security mechanisms to target
services with high security standards [8]. Still, only a few
studies have examined developers handling end-user pass-
word storage, although these are primarily responsible for
end-user password security.

In 2017 and 2018, Naiakshina et al. conducted two studies
in which 40 computer science students were asked to im-
plement the registration process for a university social net-
work [21, 22]. In a qualitative [21] and quantitative study [22],
Naiakshina et al. tested the effect of development framework
and task design. Half the participants used plain Java (JSF)
and the other half used the Spring framework. Spring offers
a support library which implements password storage with
a high level of security. With JSF, the participants had to im-
plement salting and hashing on their own. To test whether
participants would realize the need for secure password stor-
agewithout prompting, the authors gave half the participants
a task description which did not mention security, while the

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 140 Page 1

This work is licensed under a Creative Commons Attribution
International 4.0 License.

https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3290605.3300370
https://creativecommons.org/licenses/by/4.0/
ACM Staff
Sticky Note
A corrigendum for this paper has been issued. Please see https://doi.org/10.1145/3290605.3300370

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3290605.3300370&domain=pdf&date_stamp=2019-05-02

other half were explicitly tasked with implementing a secure
solution.
There were several takeaways from these two studies.

Firstly, none of the non-primed participants (i.e., those who
did not explicitly get tasked with creating a secure solution)
stored passwords securely. Two of them attempted to create
a secure solution but gave up and handed in a non-secure
solution. Of the 20 participants who were explicitly tasked
to create a secure solution, 12 implemented some level of se-
curity. Secondly, when comparing the different frameworks
(JSF vs. Spring), more of those participants who implemented
some security achieved a high score for security through
Spring’s default implementation. In the Spring conditions,
all but one participant achieved the highest score of 6 points
out of a possible 7. In the JSF conditions the spread was
much greater with values ranging from 2 to 6. Thirdly, all
participants who achieved a secure solution used "copy and
paste" to do so: i.e., none of the participants achieved secure
solutions by writing their own code.

However, there are a couple of caveats in the above results.
Firstly, all participants were computer science students. It
is unknown whether these same results would have been
observed for other types of developers. Secondly, the par-
ticipants were aware that they were taking part in a study.
This could have led them to believe that security was not of
interest in the non-priming conditions. It could also have led
the participants to take security less seriously in the priming
conditions, since they knew no real data would be under
threat if they made a mistake or created a sub-optimal solu-
tion. This would make the results a study artifact and would
invalidate the study design. This concern is supported by the
fact that 15 of the 28 participants who did not implement a se-
cure solution stated that they would have done so if they had
been doing the same task for a real employer. It is of course
also possible that the students’ statements were merely an
excuse provided after the fact to explain their behavior in
a face-saving way. This possibility is supported by the fact
that there are many password-database compromises in the
wild [12, 14, 18, 36] in which developers made mistakes just
like the students did in the study.

To shed light on this problem, we repeated Naiakshina et
al.’s study with a few necessary modifications with freelance
developers whom we hired online through Freelancer.com.
We posed as a start-up company that had just lost a developer
and needed help completing our social networking site. We
hired 43 freelancers and gave them a regular contract to
implement the registration process for us. This would allow
us to see the security properties of code created by real
developers who, we hoped, believed our ruse that they were
writing code for a real company which would use genuine
user data. After they had completed their task, they were
paid either AC100 or AC200 and then informed about the real

purpose of our study. We then asked if they would be willing
to take part in an exit survey in order to give us more insights
into their development process and to test whether they
believed they were creating code for a company. Our key
findings are:

• If You Want Security, Ask For It. We found that
security prompting had a statistically significant effect
on whether the participants stored the passwords in a
secure way. Similar to the student sample in [21, 22],
a number of freelancers did not feel responsible for
security. Especially in the lower paid group (AC100), the
majority of non-prompted freelancers did not think
about security.

• Payment. We found no effect of payment (AC100 vs.
AC200) on the final security solutions. However, this
bears further examination.

• Field vs. Lab Study. Freelance developers are aware
that clients will use their solution in the real world.
However, the quality of solutions was comparable to
the solutions of students.

• Misconceptions.We found a number of freelancers
were reducing password storage security to a visual
representation and thus using Base64 as their pre-
ferred method to ensure security. Additionally, encryp-
tion and hashing were used as synonyms, which was
often reflected by the freelancers’ programming code.

• Continuous Learning.A number of freelancers used
outdated methods to store user passwords securely.
This phenomenon was also observed in the student
sample [21] and shows that freelancers do not update
their knowledge as well.

• Copy and Paste. Similar to students’ solutions from
the lab study, we identified freelancers’ security code
on the Internet.

• Social Desirability.Anumber of freelancers reported
theywould store user passwords securely evenwithout
a security instruction. However, these participants sent
insecure solutions as their first submissions.

2 RELATEDWORK
The related work section is divided into two parts. First, we
discuss related work in the area of developer and password
studies. Second, for the methodological discussion in sec-
tion 6, we summarize those security developer studies that
utilized a sample group of freelancers.

Developer and Password Studies
In recent years many studies have been published that inves-
tigated end-user password creation, password use and knowl-
edge [7, 10, 16, 27, 31, 33–35, 37], as well as password compo-
sition policies and their effects [19, 20, 25, 28]. Even though

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 140 Page 2

mistakes by developers and administrators have greater con-
sequences, relatively little work has been done in examining
these actors in the context of password storage. The two
studies on which this paper is based were conducted by Na-
iakshina et al. [21, 22] and were described in the introduction.

In [39], Wijayarathna and Arachchilage recruited 10 devel-
opers over GitHub to test the usability of the scrypt hashing
functionality of the Bouncy Castle API. Participants worked
on their own computers and had to improve the password
storage of a simple web application by using scrypt. The
authors were able to identify 63 usability issues regarding
secure password storage.
Acar et al. [3] conducted a study with 307 GitHub users.

Participants were requested to implement 3 security related
tasks (URL shortener, credential storage, string encryption).
The authors also asked the developers to complete a question-
naire about their programming experience, security back-
ground, and occupation. The authors found a significant
effect of programming experience on the resulting imple-
mentations with regard to functionality and security. Of the
307 participants, 162 securely stored user credentials in a
database. By contrast, the majority of the insecure solutions
left user passwords vulnerable to rainbow-table attacks or
stored them in plain text.
Balebako et al. [4] interviewed 13 and surveyed 228 app

developers to find out how they make decisions concerning
privacy and security. According to the survey, half of these
developers reported that they securely store data in a data-
base. However, the work done by Naiakshina et al. and our
study show that developers also misreport and/or misunder-
stand secure storage. Therefore, we caution against using
self-reported data in this respect.

Bonneau and Preibusch [8] identified 150 websites which
offered free user accounts relying on user-chosen passwords.
They found that websites with few security features have the
worst security practices and assumed they use passwords
mainly for psychological reasons, such as building up a rela-
tionship with their customers. By contrast, websites storing
payment details or personal user data made safer security
choices.
In 2007 Prechelt [24] staged a contest where web devel-

opers competed using three different web development plat-
forms (Java EE, Pearl, PHP) in a two-day event. The result-
ing code was analyzed for usability, functionality, reliability,
security, and structure. While there were some large differ-
ences in platform characteristics, PHP was found to have the
smallest within-platform variations. Finifter andWagner [11]
also evaluated the program code of [24]. They checked for
correlations between the number of vulnerabilities and the
programming language or the framework’s support for se-
curity features. While no correlations between the language
and the web-application’s security were found, the authors

did notice that developers almost never make use of the built-
in support for password storage that was offered by many
frameworks.
Acar et al. [2] examined the effect of documentation re-

sources on the security of programmers’ code. Developers
were advised to complete four programming tasks: the stor-
age of data, the use of HTTPS, the use of ICC, and the use of
permissions. The authors found developers who used Stack
Overflow created less secure code.
Acar et al [1] conducted an online developer study to

investigate the usability of Python crypto-APIs. They found
developers need accessible documentations with secure and
easy-to-use code examples.
Gorski et al. [15] conducted a controlled online experi-

ment with 53 GitHub users to test the effectiveness of API-
integrated security advice. They found that 73% of those
participants who received a security warning and advice
improved their insecure code.

Developer Studies with Freelancers
Yamashita and Moonen [40, 41] invited 85 freelancers from
Freelancer.com to answer a survey about developers’ knowl-
edge of code smells and their interest in them. 32% of the
respondents admitted to not knowing anything about code
smells. The majority of the participants mentioned being
moderately concerned about the presence of smells in source
code.
In a tech report Bau et al. [6] developed a metric for web

application vulnerability scanners. They compared the code
created by 19 start-ups with those created by 9 freelancers
hired from freelance websites. The freelancers were asked
to design a complete youth sports photo sharing site with
a number of features. To highlight their interest in security,
the authors asked the freelancers to follow legal regulations
and to secure sensitive contact information. Three differ-
ent languages (PHP, Java/JSP, ASP) and three price ranges
(<$1000, $1000-$2500, and >$2500) were chosen for the task.
For the analysis, Bau et al. searched for correlations between
the vulnerability rate of a web application and the program-
ming language, developer’s occupation, and their security
background knowledge. Web applications written in PHP
and those implemented by freelancers showed higher weak-
nesses. Regarding password storage, a huge gap was found
between freelancers’ knowledge and the resulting implemen-
tation. We used the photo sharing scenario as the inspiration
for our own company scenario. However, we substantially re-
duced the scope of the task to focus solely on the registration
process.

3 LIMITATIONS
Our study has the following limitations which need to be
taken into account:

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 140 Page 3

Sample.We sampled developers from Freelancer.com. This
sample is certainly not representative for all developers and
might not even be representative for other freelancer hiring
services.
Deception. The premise of our study hinged on the free-

lance developers believing that they were developing code
for a real company and that any vulnerabilities would af-
fect real users. In our exit survey we asked whether they
suspected that the task they had been given was part of a
study and asked for their reasoning. We also analyzed the
developer chat for indications that a developer did not take
the task seriously. We only found one participant (N2100)
who stated that he had taken part in scientific studies before
and that he thought the task description was too detailed for
a normal job and thus he had suspected that it was part of a
study. We removed this participant from the statistical evalu-
ation. One other freelancer (P2100) indicated that he thought
that the job might be a test job to evaluate him before being
given bigger tasks. On the whole it seems that our freelancer
sample took their jobs seriously.

Language. Many of our participants were non-native Eng-
lish speakers and in some cases answers were difficult to
understand. This also created the risk that participants had
difficulty understanding the task description. While this is a
realistic problem for real jobs as well, it is sub-optimal for a
study.

We also had one problem during the execution of our study.
The project code sent to the first 17 freelancers already con-
tained two security imports (java.security and javax.crypto).
This could have inadvertently primed participants in the
non-prompted conditions that security was important. Luck-
ily for us,1 none of these participants implemented a secure
solution.

Ethics
The use of deception in research always needs to be critically
appraised and should only be used when strictly necessary.
Since our goal was to gather real world data, we opted to
pose as a company and hire freelancers. We informed par-
ticipants after completion and payment and gave them the
opportunity to continue to the questionnaire or withdraw
from the study. None withdrew from the study and only
one did not take part in the questionnaire. The participants’
feedback was positive throughout, both in the questionnaire
as well as in the reviews they left on the Freelancer site. We
initially offered some of the freelancers AC100 and the others
AC200 to see if that affected security performance. For reasons
of fairness, the AC100-group was actually paid AC200 at the
end of the study. The Research Ethics Board of our university
reviewed and approved our study.

1But unluckily for security in general.

4 METHODOLOGY
As a starting point we adopted the methodology and study
design frame from [21, 22], which was described in the In-
troduction. However, instead of using students in a lab envi-
ronment we hired freelancers from the web platform Free-
lancer.com for our study. We kept the priming/non-priming
conditions in which participants were either prompted to
store the passwords securely or not. However, we dropped
the Spring condition since the security scores in [21, 22] were
mostly homogeneous and we hoped to gain more insights
by focusing on JSF.

First Pilot Study
In our first pilot study we used exactly the same task as [21,
22]. We did not state that it was research, but posted the task
as a real job offer on Freelancer.com. We set the price range
atAC30 toAC250. Eight freelancers responded with offers rang-
ing from AC100 to AC177. The time ranged from 3 to 10 days.
We arbitrarily chose one with an average expectation of com-
pensation (AC148) and 3 working days delivery time. We gave
this participant the non-prompting task. After approximately
21 hours, we received the freelancer’s solution which, just
like the students in [21, 22], stored the passwords in plain
text. As part of the regular approval process we requested
the passwords to be stored securely. After a further 38 hours
the participant submitted code using symmetric encryption.

Critically, the participant mentioned in the follow-up chat
that he is familiar with university exercise sheets and is
available for further tasks. Since the task from [21, 22] was
framed as a university social networkingwebsite, he assumed
the task to be an exercise for university credit.2

Updated Study Design
Since we did not want the freelancers to think the code was
“only” needed for course credit but would actually be used
in the real world, we decided to change the task framing.
We changed the task from a university social networking
platform to a sports photo sharing social network. To make
it more believable we created a web presence for the com-
pany. Screen-shots from the different pages and the task
description can be found in the supplemental material.

While hiring the freelancers we posed as employees of the
company and stated that we had just lost our developer and
wanted help in finishing the registration code. We provided
the freelancers the platform code as a ZIP file. Participants
had to store user data in a remote database provided by us
via Amazon Web Services (AWS).

Second Pilot Study. In a second pilot study we tested the
new task design. The task was posted as a project with a
2Troublingly, it seems that freelancers are often hired by students to work
on university assignments.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 140 Page 4

price range from AC30-AC100. Java was specified as a required
skill. Fifteen developers made an application for the project.
Their compensation proposals ranged from AC55 to AC166 and
the expected working time ranged from 1 to 15 days. We
randomly chose two freelancers from the applicants, who did
not ask for more than AC110 and had at least 2 good reviews.
One freelancer was prompted for secure password storage
while the other was not. However, the freelancer website
shows who is working on which project and this caused
confusion for the second freelancer who thought the job
had already been done. To avoid this misunderstanding we
switched to recruiting via private messages, which will be
detailed in the next section. Both freelancers provided us
with very positive feedback with regard to our study.

Final Study
For the final study we recruited freelancers via direct mes-
sages. We searched for all freelancers and filtered for the skill
“Java.” Unfortunately, Freelancer.com’s search function also
returns JavaScript developers or developers where we saw
no connection to Java, so wemanually pruned out developers
whose profile did not include Java skills.

Based on our experience in the pre-studies we added two
payment levels to our study design (AC100 andAC200). We only
accepted freelancers’ submissions if they were functional.

The final component of the study was a play-book to con-
trol the interaction with the participants (see supplemental
material). Unlike a study in which the experimenter usually
does not interact with the participants, it is normal and ex-
pected for the hiring person to interact with the freelancers.
For the communication with freelancers we used the chat
functionality offered by Freelancer.com.We built a play-book
based on the interactions in the pre-studies and extended this
whenever needed. The play-book dictated how we would
respond to the different queries to keep our interaction as
homogeneous as possible. The three most important interac-
tions were as follows: if a participant asked if he or she should
store passwords securely or if a certain method was accept-
able, we answered “Yes, please!” and “Whatever you would
recommend/use.” If a participant delivered a solution where
passwordswere stored in plain text in the databasewe replied
“I saw that the password is stored in clear text. Could you also
store it securely?” These participants are marked as having
received the security request. We deliberately set the bar for
this extra request low, to emulate what a security-unaware
requester could do; i.e., if it looked like something hashed
we accepted it. After final code submission freelancers were
informed about the real purpose of the project and were
invited to answer a questionnaire. The questionnaire can
be found in the supplemental material and is an extended
version of the one used in [21, 22]. For filling out the survey,
participants were compensated with an additional AC20.

On Freelancer.com it is common to provide reviews for
employers and employees. In order to make sure that other
freelancers did not discover that we were conducting a study,
we asked all freelancers to avoid mentioning our real purpose
in their reviews.

Scoring Code Security
Some of the freelancers sent us videos that showed how data
was stored in a database. Additionally, we tested each sub-
mission for functionality within our system. For scoring the
security of the freelancers’ code, we adopted the security
scale of Naiakshina et al. [21, 22] (see supplemental material).
The scoring system contains a binary variable secure indicat-
ing whether participants used any kind of security in their
code and an ordinal variable security to score how well they
did. The score is based on a range of factors such as what
hash algorithm was used, the iteration count, and whether
and how the salt was generated. The value of security could
range from 0 to 7, although 6 was the highest score actually
achieved in both the freelance and student group.
We had to extend the scale because the freelancers used

two methods which did not appear in the student study. In
our study we also saw the use of Base64 encoding and sym-
metric encryption, as well as one occurrence of HMAC. We
scored these as follows: both Base64 and symmetric encryp-
tion received 0 points for security. HMAC was treated as a
hash function with a non-random salt. All code was inde-
pendently reviewed by three authors. Differences between
the scores were resolved by discussion.

Quantitative Analysis
Due to the adjusted study design, wewere able to test three of
the seven main hypotheses from [22]. In particular, we tested
whether prompting (H-P1), years of Java experience (H-G1),
or password storage experience (H-G2) had an effect on secu-
rity. We used the same statistical tests as used in [22]. We did
not use multivariate statistics since we considered our sam-
ple size too small [30]. We used Bonferroni-Holm corrections
for all tests concerning the same dependent variable. To ease
identification, we labeled Bonferroni-Holm corrected tests
with “family = N,” where N is the family size, and reported
both the initial and corrected p-values (cor−p). With roughly
10 participants per condition we could only find large effects;
therefore, absence of statistical significance should not be
interpreted as an absence of an effect. A summary of our
statistical analysis results can be found in the supplementary
material.

Qualitative Analysis
We used inductive coding [32] to analyze our qualitative data
from the open questions in the survey as well as the chat

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 140 Page 5

Gender Male: 39 Female: 1 Prefer not to say: 1, NA: 2
Age∗ min = 22, max = 68 mean = 30.34, median = 29 sd = 7.63, NA: 2
University Degree Yes: 37 No: 4 NA: 2
Profession Freelance developer: 29 Industrial developer: 7 Academic researcher: 1

University collaborator and freelance developer: 1 Software engineering lead: 1 Undergraduate student: 1, Graduate student: 1
NA: 2

Country of Origin Bangladesh: 1 India: 14 Vietnam: 2
China: 8 United States: 3 Italy, Mexico: 2

Mongolia: 1 Nigeria: 1 Pakistan: 4
Sri Lanka: 2 Egypt: 3 NA: 2

General Development Experience [years]∗ min = 2, max = 20 mean = 8, median = 8 sd = 3.61, NA: 2
Java Experience [years]∗ min = 1, max = 15 mean = 6.39, median = 6 sd = 2.66, NA: 2

* = There were no significant demographic differences between the groups.

Table 1: Demographics of the 43 Participants

interactions during development. Two researchers indepen-
dently searched for themes and categories emerging in the
raw data. After coding open questions of a new participant,
both researchers went back to their codes, analyzing them
again for the prior participants as well. After the coding
process was completed, the codes were compared and the
inter-coder agreement by using the Cohen’s kappa coef-
ficient (κ) [9] was calculated. The agreement was 0.91. A
value above 0.75 is considered a good level of coding agree-
ment [13].

Participants
As described above, we used Freelancer.com to search for
developers with Java skills and manually removed those
who only specified JavaScript in their profile. In total we
selected 340 developers of which we had to remove 80 due
to the search issue. That left us with 260 remaining Java
freelancers. We randomly assigned these 260 participants
to one of our four conditions: Prompting-100Euro (P100),
Non-Prompting-100Euro (N100), Prompting-200Euro (P200),
Non-Prompting-200Euro (N200) and then contacted them
with the job offer. We did this in batches to balance condi-
tions in case of higher uneven rates. A total of 211 did not
accept the offer. The most common reasons were as follows:
72 did not respond; 63 declined the job because they were
not experienced enough with Java, JSF, Hibernate, or Post-
greSQL, which were mentioned in the task description; and
22 declined due to lack of time. We hired the remaining 49
developers of whom 44 completed the task. One of these had
technical trouble submitting his solution so we only have 43
participants in our final sample.
The 43 valid participants reported ages between 22 and

68 years (median: 29, mean: 30.34; sd: 7.63) and almost all of
them reported being male (39/43). All but two of our partici-
pants had been programming in general for at least two years
and in Java for at least a year. Most (29) named freelancing
as their main profession. Seven indicated to be industrial
developers and only two reported to be students. More in-
formation on the demographics can be found in Table 1.

We analyzed the effect of the two different payment levels
on the acceptance rate of freelancers. In the prompted task,
which asked for a secure solution, 11 of 31 accepted theAC100
offer, and 14 out of 20 accepted the AC200 offer. Fisher’s exact
test showed this difference to be statistically significant (p =
0.02, confidence interval [CI] = [0.058, 0.90], odds ratio [OR]
= 0.24). In the non-prompted conditions, where security was
not mentioned, 12 of 18 accepted the AC100 offer and 11 of 14
accepted the AC200 offer. The differences point in the same
direction, but were not statistically significant.

5 RESULTS OF FREELANCER PASSWORD STUDY
Table 2 and Table 3 show a summary of the participants’
submission evaluation.3 It took our participants a mean of
3.2 days (sd 2.1, median 3) to submit their solution, including
the time to add security if we had to request that. Those
participants, who delivered an insecure solution at first and
were asked to store the passwords securely, needed a mean
of 6.4 hours (sd 7.3h, median 3.17 h) to fulfill our request.

Security
Our freelancers used three different techniques to store user
passwords: (1) hashing (+ salting); (2) symmetric encryption;
and (3) Base64 encoding.
Seventeen freelancers used a hash function in their first

submissions. After receiving a security request, 29 of the
freelancers overall stored user passwords securely by hash-
ing. Participants who decided to use bcrypt benefited from
the library’s automatic salt generation. Also, participants
who used PBKDF2 came across a salt parameter and were
thus forced to generate a salt value. By contrast, only 3 of 17
participants, who used other hash algorithms, implemented
salting. One of them generated a random salt, one made use
of the username, and one hard-coded a static salt.

Three freelancers used symmetric encryption in order to
securely store user passwords in their first submissions. After

3Table 2 considers participant N2100, who suspected the task was part of a
research study. This participant was not included in Table 3 and was also
excluded from the statistical tests in the following sections.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 140 Page 6

Participant Prompting Payment Working
Time

Include
Security

Secure Security
Score

Function Length
in bits

Iteration Salt C&P Study SQ

P1100 1 100 1 Day 3min 0/0 0/0 Base64 ✗ ✗ ✗
P2100 1 100 7 Days 0 0 Sym. encryption(3DES) ✗ ✗ ✗
P3100 1 100 8 Days 1 1 MD5 128 1 ✓ ✗ ✗
P4100 1 100 1 Day 1h 50min 0/1 0/6 BCrypt 184 210 SecureRandom ✗ ✗ ✗
P5100 1 100 3 Days 1 6 BCrypt 184 210 SecureRandom ✓ ✗ ✗
P6100 1 100 3 Days 1 3 SHA-256 256 1 Username ✓ ✗ ✗
P7100 1 100 3 Days 1 1 MD5 128 1 ✗ ✗ ✗
P8100 1 100 2 Days 1 6 BCrypt 184 210 SecureRandom ✓ ✗ ✗
P9100 1 100 3 Days 0 0 Base64 ✗ ✗ ✗

P1200 1 200 4 Days 0 0 Sym. encryption(3DES) ✓ ✗ ✗
P2200 1 200 3 Days 1 1 MD5 128 1 ✓ ✗ ✗
P3200 1 200 1 Day 1 1 MD5 128 1 ✗ ✗ ✓
P4200 1 200 5 Days 1 1 MD5 128 1 ✓ ✗ ✗
P5200 1 200 3 Days 1 3 HMAC, SHA-1 160 2 Static ✗ ✗ ✗
P6200 1 200 2 Days 4h 15min 0/0 0/0 Sym. encryption(AES) ✗ ✗ ✓
P7200 1 200 5 Days 0 0 Base64 ✗ ✗ ✗
P8200 1 200 3 Days 1 6 PBKDF2(SHA1) 256 10000 Random ✓ ✗ ✗
P9200 1 200 6 Days 1 6 BCrypt 184 211 SecureRandom ✓ ✗ ✗
P10200 1 200 1 Day 0 0 Base64 ✗ ✗ ✗
P11200 1 200 1 Day 1 6 BCrypt 184 211 SecureRandom ✗ ✗ ✗
P12200 1 200 2 Days 1 5 PBKDF2 256 10000 Static ✓ ✗ ✗

N1100 0 100 1 Day 4min 0/1 0/6 BCrypt 184 212 SecureRandom ✗ ✗ ✗
N2100 0 100 1 Day 6h 20min 0/1 0/2 SHA-1 160 1 ✗ ✓ ✗
N3100 0 100 2 Days 0 0 Base64 ✗ ✗ ✗
N4100 0 100 5 Days 17h 0/1 0/1 MD5 128 1 ✓ ✗ ✗
N5100 0 100 1 Day 18h 0/1 0/2 SHA-256 256 1 ✗ ✗ ✓
N6100 0 100 5 Days 21h 0/0 0/0 Base64 ✗ ✗ ✓
N7100 0 100 3 Days 3h 0/0 0/0 Sym. encryption(AES) ✗ ✗ ✗
N8100 0 100 2 Days 25min 0/1 0/1 MD5 128 1 ✓ ✗ ✓
N9100 0 100 1 Day 1 4 MD5 128 1 SecureRandom ✓ ✗ ✗
N10100 0 100 3 Days 3h 20min 0/1 0/1 MD5 128 1 ✗ ✗ ✗
N11100 0 100 8 Days 19h 0/1 0/2 SHA-256 256 1 ✗ ✗ ✗
N12100 0 100 4 Days 0 0 Sym. encryption(AES) ✓ ✗ ✗

N1200 0 200 1 Day 6min 0/0 0/0 Base64 ✗ ✗ ✗
N2200 0 200 1 Day 1 6 PBKDF2(SHA1) 256 10000 SecureRandom ✓ ✗ ✗
N3200 0 200 5 Days 10min 0/1 0/1 MD5 128 1 ✗ ✗ ✗
N4200 0 200 3 Days 1h 0/1 0/2 SHA-256 256 1 ✗ ✗ ✗
N5200 0 200 4 Days 1 2 SHA-256 256 ✗ ✗ ✗
N6200 0 200 2 Days 1 6 PBKDF2(SHA-1) 256 1016 SecureRandom ✗ ✗ ✗
N7200 0 200 4 Days 0 0 Base64 ✗ ✗ ✗
N8200 0 200 2 Days 4h 0/1 0/6 PBKDF2(SHA-1) 1152 64000 SecureRandom ✓ ✗ ✗
N9200 0 200 3 Days 5h 0/0 0/0 Sym. encryption(3DES) ✗ ✗ ✗
N10200 0 200 3 Days 3h 0/1 0/6 BCrypt 184 210 SecureRandom ✓ ✗ ✗

Table 2: Evaluation of Participants’ Submissions
Bold: Participants who at first delivered an insecure solution and received the additional security request. Working time participants took to submit
their first solution. Include Security: Time participants needed to add security after the request. C&P: Security code was copied and pasted from the
Internet. Study: Freelancers who stated that they were aware the project might be a study. SQ: Freelancers who asked which hashing function they

should use.

receiving a security hint, 3 additional freelancers decided to
use symmetric encryption. Interestingly, almost all of them
used a secret key, which was a combination of our social
networking website name “SportSnapShare” and some other
String (e.g., registration). As noted in the methodology, we
did not consider this as a secure solution.

Further, 5 of our participants decided to use Base64 to en-
code the passwords in their first submission. After receiving
a security instruction, 3 additional freelancers added Base64
to their solution. Naturally, this is not a secure solution.
Since some participants received a security request, we

checked to see if the security scores of these participants
differed from those who did not (but who considered security
by themselves). We did not find such a difference (Wilcoxon
rank sum: W = 200, p-value = 0.83).
Next we wanted to see the effects of any of our two

variables task description (prompting vs. non-prompting)
and payment (AC100 vs. AC200). For this we first conducted a

Fisher’s exact omnibus test on all four conditions (FET: p =
0.02). Further, we followed this up with three post-hoc tests
(regarding prompting, payment and password storage expe-
rience) with Bonferroni-Holm correction to test the variables
separately.
Task Design. For the first solution, we received 17 non-

secure solutions from the non-prompted and 8 from the
prompted participants (see Table 3). For the secure solu-
tions, 4 came from non-prompted participants and 13 from
prompted. Consequently, task design had a significant effect,
with non-prompted participants delivering fewer initial se-
cure solutions (FET: p = 0.01, cor − p = 0.03, OR = 6.55, CI =
[1.44, 37.04], family = 3).
Payment did not have a significant effect (FET: p = 0.22,

cor−p = 0.44, family = 3). However, more participants handed
in secure initial solutions in the AC200 conditions. Since we
had a small sample size, we recommend not dismissing the

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 140 Page 7

Secure Insecure

Prompted100 5 4
Prompted200 8 4

Non-Prompted100 1 10
Non-Prompted200 3 7

Table 3: Number of Secure Solutions per Condition

different payment levels yet and looking at this in future
work.

Experience. Acar et al. [3] found a correlation between pro-
gramming experience, whereas Naiakshina et al. [22] did not.
Naiakshina postulated that the effect might not be visible
due to the smaller range of experience seen in the student
sample. Thus, we also tested whether more Java experience
is correlated with higher security scores. We found no effect
(Kruskal-Wallis: χ 2 = 13.31, df = 10, p-value = 0.21). Fur-
ther, we investigated whether previous password experience
might affect the security awareness. We found no significant
effect between whether the participants stated that they had
stored passwords before and whether their solutions were
secure (FET: p-value = 0.52, cor − p = 0.52, OR = 0, CI = [0,
8.91], family = 3).

Copy and Paste. Naiakshina et al. [22] found a significant
positive effect of copy and paste. Due to the fact that we
conducted a field study we could not gather the same level
of information on this behavior. We did, however, analyze
the code to see if we could find online sources. We found
16 obviously copied examples. Out of these 16 participants,
6 copied MD5, 2 symmetric encryption, 4 bcrypt, 3 PBKDF2,
and 1 SHA-1 as security methods. We cannot say with cer-
tainty that the other solutions were not copied, so we did
not perform any comparisons on this data.

Qualitative Analysis
Next, we present a qualitative analysis of the data we gath-
ered. Based on the inductive coding process we separate our
findings into three phases: (1) the request phase; (2) the im-
plementation phase; and (3) the reflection phase. The coding
overview can be found in the supplemental material.

Phase One - Request
Our participants mentioned several aspects from which they
decided whether to implement what they thought was a
secure solution.While N4100 stated that security is dependent
on data sensitivity, most of our participants (N6100, N10100,
P9200, P7100, P5100, N11100, N7100, N2100, N9200, N5200) stated
that security should be part of the task description from the
client: “I cannot find it in requirements, password encryption,
can you tell me where is it written? I might have missed it”

(N11100). Interestingly, this was also the case for participants
in the prompted conditions, where a secure solution was
explicitly required.
In the non-prompted group we had an interesting case:

N10100 sent us a message asking whether he should store
user passwords securely. However, before we could reply he
had already handed in a plain text solution. This happened
within three hours during the night in our time zone.

Asmentioned above, we found a significant effect of prompt-
ing and non-prompting with our freelancers. Four out of 22
non-prompted developers did add security, which is more
than the 0 out of 20 in the student lab study.4 Yet the lesson
remains the same: Even for a task which - for security ex-
perts - is obviously security-critical, like storing passwords,
one should not expect developers to know this or be willing
to spend time on it without explicit prompting:

“If you want, I can store the encrypted password.” (P2200)

So it is absolutely necessary to explicitly state that security
is desired.

Phase Two - Implementation
Misconceptions. While the task description had a similar ef-
fect on the freelancers as on the students, we found some
interesting differences concerning misconceptions about se-
cure password storage. For example, some participants in the
student sample confused password storage security with data
transmission security. This confusion was not found in our
freelance sample. Instead, we found another phenomenon,
which was not observed in the student sample: the usage
of the binary-to-text encoding scheme Base64 to “securely”
store user passwords in a database. Eight of our freelancers
stored user passwords in the database by using Base64; 4
of them were in the prompted condition and 4 in the non-
prompted condition. Of the 18 participants who received the
additional security request, 3 (N1200, N6100, P1100) decided to
use Base64 and argued, for example: “[I] encrypted it so the
clear password is not visible” (N1200) and “It is very tough to
decrypt” (N6100).

We also found misconceptions which were shared by stu-
dents and freelancers. Many participants used hashing and
encryption as synonyms (e.g., P5200, N7100, N11100, N10200,
P2200, N8100, N10100, N12100). However, this did not lead any
of the students to use symmetric encryption methods to store
passwords. This misconception was strongly reflected by the
freelancers’ code submissions. For instance, when asked how
he stored user passwords, N7100 stated he “used [a] hashing
algorithm.” In actual fact, he used symmetric encryption. Six

4The difference is not statistically significant (FET p = 0.12). However, due
to the small sample size this should not be over-interpreted.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 140 Page 8

freelancers used symmetric encryption in order to store user
passwords and some were very convinced that this was a
good solution (“It will be almost impossible to break” (P1200)).
Another freelancer (P5200) used the hash-based message au-
thentication code HMAC in order to secure user passwords.
While being useful in some context, this method is not in-
tended to be used for storing user passwords in a database.
Many freelancers also used outdated methods, but still

claimed to have implemented a sufficient or even optimal se-
cure solution (e.g., N5100, N11100, P2200, N8100, N10100, P3200).
For instance, N11100 declared, “Passwords are stored after
encryption, usually MD5. This makes it secure and almost
impossible to compromise.”

Functionality First, Security Costs Extra. Similar to end-users
and participants from the student sample [21], freelancers
concentrated on the functionality first. The complexity of
the application (N7100) and lack of time (P9100) were named
as reasons for this. Since we made no restrictions on the time,
this probably refers to either a cost-benefit calculation or the
overall workload of the freelancer. However, those partici-
pants who received the security request, took a median time
of 3.17 hours to add security. For instance, after receiving the
instruction to store user passwords securely, N3200 said “Sure,
it’s a piece of cake” and added MD5 without salt or iterations
in 10 minutes. Interestingly, N11100 even asked for an extra
payment of AC20: “I can add, but I’ll have to implement md5
encryption at client end. Its a couple hrs job. Can you please
increase budget a little?” Another indication that security
impacts the budget can be seen in the rejection rate of the
100 euro job offers in which security was mentioned (see
Section 4).

Library Usability. Similar to the students, our participants
mentioned that they like APIs/libraries which provide auto-
matic security (N10200) and only need a few lines of code to
work (P8100, P11200). A number of participants reported that
they specifically chose an API/library because it is easy to
use (N1100, N10100, N3200, N6200, P4200).

Phase Three - Reflection
After submitting their solutions, the freelancers filled out
our survey in which they reflected their knowledge and ex-
perience with regard to password storage security. Based on
our coding we found some distinct character types in these
reflections. The coding table in the supplemental material
gives details and counts. Due to the small sample size, the
relation between the groups should not be over-interpreted.

Cocky Developers. We found freelancers who believed that
they had created an optimal or even great solution: “Because
I write the best code always” (N1100). Indeed, his final solution
was one of the best since he used bcrypt and received 6

of 7 points for security. However, his first submission was
insecure and he needed to be explicitly asked for security.
P11200 and N4200 also claimed to write optimal code, because
they had “extensive experience” and were “skillful.” While
P11200 also submitted a high scoring solution with 6 points,
N4200 received only 2 points for security.

Developers’ Uncertainties. Several freelancers stated that they
were unsure about the security of their solutions. However,
this did not necessarily mean that they created bad solu-
tions. N8200 indicated that he was undecided about which
algorithm or which parameters are most appropriate for safe
password storage. Yet he received 6 out of 7 points for secu-
rity. By contrast, P3100 and P7200 indicated not understanding
hashing as a security concept at all. P3100 used MD5 and P7200
Base64 as techniques in their final applications. Although
P3100 was aware he used an outdated hash function, he did
not change this in his code. P9100 was also aware that us-
ing Base64 is the wrong technique and yet, despite being in
the prompting condition, he implemented this in his final
submission.

Security Aware. We also had a couple of security-conscious
developers who implemented security despite being in the
non-prompting condition. However, we did observe different
levels of knowledge concerning the actual implementation.
N6200 received 6 of 7 points without any prompting. He
noted: “I think this is an intuitive step since nobody wants to
put his passwords under exposure.” By contrast, P4200 used
MD5 to store user passwords securely and argued “I’ve used
this technique many times to store passwords and have not
faced any security issues.”

Trust in Standards. A fair number of our freelancers argued
that they trust standards and third party APIs to do the
right thing and store passwords securely (P8100, P9200, N11100,
P3200, N2100, P2100, N4100, P11200, P12200). However, this trust
is sometimesmisplaced.While P8100 and P9200 indeed used in-
dustry standards for security and thus received 6 of 7 points,
almost all of the other participants used MD5 as a “standard”
for password storage. Additionally, P6100, P9200 and N11100
indicated that trust in organizations is an important aspect
when choosing security features.

Testing. N9100, N9200, and P7200 claimed to have conducted
tests in order to ensure security even though, by using MD5
symmetric encryption and Base64, they did not ensure best
practices.

Social Desirability. We also had some instances of what is
likely to be a manifestation of the social desirability bias
while answering survey questions. Several freelancers stated
that they store passwords securely even if not explicitly

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 140 Page 9

instructed to. However, 14 of these 30 sent insecure solutions
as their first submission.

6 METHODOLOGICAL DISCUSSION
While the usable security and privacy community has am-
ple experience in recruiting participants for lab and online
end-user studies, researchers have limited resources and lack
knowledge of how and where to recruit professionals for se-
curity developer studies. Amazon Mechanical Turk (MTurk)
is one of the most famous examples where participants are
recruited for online end-user studies. A comparable service
for software developer recruitment is not yet known. There-
fore, previous studies used convenience samples such as
computer science students [2, 5, 21, 23] or GitHub develop-
ers [3, 15, 26, 38, 39].

The response rate for GitHub users is rather low [1–3, 15,
26, 39]. For instance, of the 50,000 invited developers in [2],
302 took part in the study. In [15] 38,533 emails were sent
to GitHub users, from which 272 agreed to take part in the
study - finally resulting in 53 valid participants.

Apart from the low response rate, the iterated sending of
study invitation emails can result in bothersome spam after
a while. In [3], of the 23,661 invited GitHub users, 315 partici-
pants completed the study, 3,890 requests were bounced, and
another 447 invitees requested to be removed from the list.
Also in [1], 52,448 emails were sent to GitHub users from
which 256 participants completed the study, 5,918 emails
bounced, and 698 users requested to be removed from the
list. Consequently, we assume that this recruitment method
will fail for future studies.

Apart from gathering results from a field study with free-
lance developers, we wanted to see how students and online
freelancers differ when conducting a similar task. Due to
the necessary change in the task description this is not a
direct comparison. Nevertheless, we believe we can offer
some valuable insights into the use of these two groups for
developer studies.

Freelance vs. Student Sample
Requirements. Similar to the students from Naiakshina et
al. [21] (e.g., JN11: “I was aware that the good practice is
to store them securely, but the task didn’t mention anything
about that”), our participants relied on client requirements
when deciding whether they wanted to store the passwords
securely. Therefore, task description is a main motivator
when deciding to deal with security.

Misconceptions. Both students and freelancers have security
misconceptions. Interestingly, our freelancers had a wider
range of them. A number of freelancers used Base64 to store
user passwords securely. This misconception shows that

participants confuse encoding functions with hashing func-
tions by reducing them to visual representations, a phenom-
enon also shared by end-users. Additionally, encryption and
hashing were used as synonyms, also often reflected by the
freelancers’ programming code. It seems that due to miscon-
ceptions, developers are searching for familiar terms like
encryption and do not take the time to check whether this
method is useful in the related use-cases.

Continuous Learning. We found freelancers often use out-
dated methods to store passwords securely. This phenom-
enon, which was also observed in the student sample [21],
shows that freelancers do not update their knowledge as
well. Yet as Naiakshina et al. observed in [22], using a web
framework that provides secure password storage as a de-
fault that gains widespread use by tutorials could increase
the likelihood of using the latest security standards due to
copying and pasting. In fact, similar to the students, we found
freelancers pasting in security code they had obtained from
the Internet. In some cases we were able to identify this by
spotting the same comments in the code snippets which had
originally appeared in tutorials and blog posts, and which
our freelancers had not bothered to change.

Field vs. Lab Study. Even though we had freelancers create
the code under the impression that it would be used in the
real world, the results are very similar to the lab study. While
this single study cannot decide this on its own, it is an indi-
cation that lab studies can deliver valuable insights.

Experience With Freelancer.com
Response Rate. In comparison to the rather low response rate
in developer studies conducted with GitHub users, we found
Freelancer.com to be a suitable source for recruiting enough
willing professional developers to work on (study) projects.
Especially for longer studies such as those conducted by Na-
iakshina et al. [21, 22], Freelancer.com can be an appropriate
choice for a recruitment website. This convenience, of course,
comes at a cost of hiring the freelancers. Most of the GitHub
studies were conducted with volunteers.

Experience With Freelancers. While Bau et al. in [6] reported
freelancers to be generally unreliable, Yamashita and Moo-
nen [40, 41] emphasized the flexibility, the access to a wide
population, and the low costs of Freelancer.com while also
acknowledging the uncertainty of freelancers’ backgrounds
and skills. Unlike Bau et al., we found our participants to
be very dependable. All of our hired freelancers delivered a
solution in a reasonable amount of time, with only a handful
of participants needing longer to implement the registration
functionality than they initially promised. On the other hand,
communication was a challenge in some cases, as most of
the participants were not fluent in English.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 140 Page 10

7 CONCLUSION
In this paper we present the results of a field study with 43
freelance developers recruited from Freelancer.com. Broadly
speaking, we found similar results as Naiakshina et al. [21,
22] did in their lab study. We confirmed that task framing
has a large effect. Importantly, we shed light on the state-
ment made by many of the students in the Naiakshina et al.
studies, who claimed that they would have created secure
code if they had been doing this for a real client. Our sample
shows that freelancers who believe they are creating code
for a real company also seldom store passwords securely
without prompting. We also highlighted differences between
the misconceptions and behaviors of student and freelance
developers.

In addition, we found a significant effect in the freelancers’
acceptance rate between the AC100 and AC200 conditions for
the prompted task and examined the effect of different pay-
ment levels on secure coding behavior. We saw more secure
solutions in the AC200 conditions, although the difference
was not statistically significant. However, this result might
be due to the small sample size and we believe this is worth
following up in future work.

8 ACKNOWLEDGMENTS
This work was partially funded by the ERC Grant 678341:
Frontiers of Usable Security.

REFERENCES
[1] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon

Kim, Michelle L Mazurek, and Christian Stransky. 2017. Comparing
the Usability of Cryptographic APIs. In Security and Privacy (SP), 2017
IEEE Symposium on. IEEE, IEEE, San Jose, CA, USA, 154–171.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L
Mazurek, and Christian Stransky. 2016. You Get Where You’re Looking
for: The Impact of Information Sources on Code Security. In 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, San Jose, CA, USA,
289–305. https://doi.org/10.1109/SP.2016.25

[3] Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L.
Mazurek, and Sascha Fahl. 2017. Security Developer Studies with
GitHub Users: Exploring a Convenience Sample. In Thirteenth Sym-
posium on Usable Privacy and Security (SOUPS 2017). USENIX Associ-
ation, Santa Clara, CA, 81–95. https://www.usenix.org/conference/
soups2017/technical-sessions/presentation/acar

[4] Rebecca Balebako, Abigail Marsh, Jialiu Lin, Jason I Hong, and Lor-
rie Faith Cranor. 2014. The Privacy and Security Behaviors of Smart-
phone App Developers. (2014).

[5] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng,
Emerson Murphy-Hill, and Chris Parnin. 2017. Do Developers Read
Compiler Error Messages?. In Proceedings of the 39th International
Conference on Software Engineering (ICSE ’17). IEEE Press, Piscataway,
NJ, USA, 575–585. https://doi.org/10.1109/ICSE.2017.59

[6] Jason Bau, Frank Wang, Elie Bursztein, Patrick Mutchler, and John C
Mitchell. 2012. Vulnerability Factors in New Web Applications: Audit
Tools, Developer Selection & Languages. Stanford, Tech. Rep (2012).

[7] J. Bonneau. 2012. The Science of Guessing: Analyzing an Anonymized
Corpus of 70 Million Passwords. In 2012 IEEE Symposium on Security

and Privacy. IEEE, San Francisco, CA, USA, 538–552. https://doi.org/
10.1109/SP.2012.49

[8] Joseph Bonneau and Sören Preibusch. 2010. The Password Thicket:
Technical and Market Failures in Human Authentication on the Web..
In WEIS.

[9] Jacob Cohen. 1960. A coefficient of agreement for nominal scales.
Educational and psychological measurement 20, 1 (1960), 37–46.

[10] Serge Egelman, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin
Beznosov, and Cormac Herley. 2013. Does my password go up to
eleven?: The Impact of Password Meters on Password Selection. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, ACM, New York, NY, USA, 2379–2388.

[11] Matthew Finifter and David Wagner. 2011. Exploring the Relation-
ship Betweenweb Application Development Tools and Security. In
Proceedings of the 2Nd USENIX Conference on Web Application Devel-
opment (WebApps’11). USENIX Association, Berkeley, CA, USA, 9–9.
http://dl.acm.org/citation.cfm?id=2002168.2002177

[12] Jim Finkle and Jennifer Saba. 2012. LinkedIn suffers data breach-
security experts. Retrieved May 18, 2017 from http://in.reuters.com/
article/linkedin-breach-idINDEE8550EN20120606

[13] Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik. 2013. Statistical
methods for rates and proportions. John Wiley & Sons.

[14] Dinei Florêncio, Cormac Herley, and Paul C Van Oorschot. 2014. An
administrator’s guide to internet password research. In 28th Large
Installation System Administration Conference (LISA14). 44–61.

[15] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stran-
sky, Sebastian Möller, Yasemin Acar, and Sascha Fahl. 2018. Developers
Deserve Security Warnings, Too: On the Effect of Integrated Security
Advice on Cryptographic (API) Misuse. In Fourteenth Symposium on
Usable Privacy and Security (SOUPS 2018). USENIX Association, Balti-
more, MD, 265–281. https://www.usenix.org/conference/soups2018/
presentation/gorski

[16] Ameya Hanamsagar, Simon S Woo, Chris Kanich, and Jelena Mirkovic.
2018. Leveraging Semantic Transformation to Investigate Password
Habits and Their Causes. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. ACM, ACM, New York, NY,
USA, 570.

[17] Philip G. Inglesant and M. Angela Sasse. 2010. The True Cost of
Unusable Password Policies: Password Use in the Wild. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’10). ACM, New York, NY, USA, 383–392. https://doi.org/10.1145/
1753326.1753384

[18] Poul-Henning Kamp, P Godefroid, M Levin, D Molnar, P McKenzie,
R Stapleton-Gray, B Woodcock, and G Neville-Neil. 2012. LinkedIn
Password Leak: Salt Their Hide. ACM Queue 10, 6 (2012), 20.

[19] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L
Mazurek, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Serge
Egelman. 2011. Of Passwords and People: Measuring the Effect of
Password-Composition Policies. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. ACM, ACM, New York,
NY, USA, 2595–2604.

[20] Peter Mayer, Jan Kirchner, and Melanie Volkamer. 2017. A Sec-
ond Look at Password Composition Policies in the Wild: Compar-
ing Samples from 2010 and 2016. In Thirteenth Symposium on Us-
able Privacy and Security (SOUPS 2017). USENIX Association, Santa
Clara, CA, 13–28. https://www.usenix.org/conference/soups2017/
technical-sessions/presentation/mayer

[21] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco
Herzog, Sergej Dechand, and Matthew Smith. 2017. Why Do Develop-
ers Get Password Storage Wrong?: A Qualitative Usability Study. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’17). ACM, New York, NY, USA, 311–328.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 140 Page 11

https://doi.org/10.1109/SP.2016.25
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1109/SP.2012.49
http://dl.acm.org/citation.cfm?id=2002168.2002177
http://in.reuters.com/article/linkedin-breach-idINDEE8550EN20120606
http://in.reuters.com/article/linkedin-breach-idINDEE8550EN20120606
https://www.usenix.org/conference/soups2018/presentation/gorski
https://www.usenix.org/conference/soups2018/presentation/gorski
https://doi.org/10.1145/1753326.1753384
https://doi.org/10.1145/1753326.1753384
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/mayer
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/mayer

https://doi.org/10.1145/3133956.3134082
[22] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, and

Matthew Smith. 2018. Deception Task Design in Developer Pass-
word Studies: Exploring a Student Sample. In Fourteenth Symposium
on Usable Privacy and Security (SOUPS 2018). USENIX Association,
Baltimore, MD, USA, 297–313. https://www.usenix.org/conference/
soups2018/presentation/naiakshina

[23] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes,
Charles Weir, and Sascha Fahl. 2017. A Stitch in Time: Supporting
Android Developers in Writing Secure Code. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(CCS ’17). ACM, New York, NY, USA, 1065–1077. https://doi.org/10.
1145/3133956.3133977

[24] Lutz Prechelt. 2011. Plat_Forms: A Web Development Platform Com-
parison by an Exploratory Experiment Searching for Emergent Plat-
form Properties. IEEE Transactions on Software Engineering 37, 1 (Jan
2011), 95–108. https://doi.org/10.1109/TSE.2010.22

[25] SeanM Segreti, WilliamMelicher, Saranga Komanduri, DaryaMelicher,
Richard Shay, Blase Ur, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, and Michelle L Mazurek. 2017. Diversify to Survive: Making
Passwords Stronger with Adaptive Policies. In Thirteenth Symposium
on Usable Privacy and Security (SOUPS). USENIX Association, Santa
Clara, CA, USA, 1–12. https://www.usenix.org/conference/soups2017/
technical-sessions/presentation/segreti

[26] Awanthika Senarath and Nalin Asanka Gamagedara Arachchilage.
2018. Understanding Software Developers’ Approach towards Imple-
menting Data Minimization. arXiv preprint arXiv:1808.01479 (2018).

[27] Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung)
Huh, Michelle L. Mazurek, Sean M. Segreti, Blase Ur, Lujo Bauer, Nico-
las Christin, and Lorrie Faith Cranor. 2014. Can Long Passwords Be
Secure and Usable?. In Proceedings of the 32Nd Annual ACM Conference
on Human Factors in Computing Systems (CHI ’14). ACM, New York,
NY, USA, 2927–2936. https://doi.org/10.1145/2556288.2557377

[28] Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung)
Huh, Michelle L. Mazurek, Sean M. Segreti, Blase Ur, Lujo Bauer, Nico-
las Christin, and Lorrie Faith Cranor. 2016. Designing Password Poli-
cies for Strength and Usability. ACM Transactions on Information
and System Security (TISSEC) 18, 4, Article 13 (May 2016), 34 pages.
https://doi.org/10.1145/2891411

[29] Richard Shay, Saranga Komanduri, Patrick Gage Kelley, Pedro Gio-
vanni Leon, Michelle L. Mazurek, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. 2010. Encountering Stronger Password Requirements:
User Attitudes and Behaviors. In Proceedings of the Sixth Symposium
on Usable Privacy and Security (SOUPS ’10). ACM, New York, NY, USA,
Article 2, 20 pages. https://doi.org/10.1145/1837110.1837113

[30] Kamran Siddiqui. 2013. Heuristics for Sample Size Determination in
Multivariate Statistical Techniques. World Applied Sciences Journal 27
(01 2013), 285–287. https://doi.org/10.5829/idosi.wasj.2013.27.02.889

[31] Elizabeth Stobert and Robert Biddle. 2014. The Password Life Cycle:
User Behaviour in Managing Passwords. In 10th Symposium On Usable
Privacy and Security (SOUPS 2014). USENIX Association, Menlo Park,
CA, USA, 243–255. https://www.usenix.org/conference/soups2014/
proceedings/presentation/stobert

[32] David R Thomas. 2006. A general inductive approach for analyzing
qualitative evaluation data. American journal of evaluation 27, 2 (2006),
237–246.

[33] Blase Ur, Jonathan Bees, Sean M. Segreti, Lujo Bauer, Nicolas Christin,
and Lorrie Faith Cranor. 2016. Do Users’ Perceptions of Password
Security Match Reality?. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (CHI ’16). ACM, New York, NY,
USA, 3748–3760. https://doi.org/10.1145/2858036.2858546

[34] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael
Maass, Michelle L. Mazurek, Timothy Passaro, Richard Shay, Timothy
Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Serge Egelman,
and Julio López. 2012. Helping Users Create Better Passwords. USENIX
37, 6 (2012), 51–57. http://www.ece.cmu.edu/~lbauer/papers/2012/
login2012-passwords.pdf

[35] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M. Segreti, Richard Shay,
Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. 2015. I Added
’!’ at the End to Make It Secure: Observing Password Creation in the
Lab. In Eleventh Symposium On Usable Privacy and Security (SOUPS
2015). USENIX Association, Ottawa, 123–140. https://www.usenix.
org/conference/soups2015/proceedings/presentation/ur

[36] Ashlee Vance. 2010. If your password is 123456, just make it hackme.
The New York Times 20 (2010).

[37] Rick Wash, Emilee Rader, Ruthie Berman, and Zac Wellmer. 2016.
Understanding Password Choices: How Frequently Entered Pass-
words are Re-used across Websites. In Twelfth Symposium on
Usable Privacy and Security (SOUPS). USENIX Association, Den-
ver, CO, 175–188. https://www.usenix.org/conference/soups2016/
technical-sessions/presentation/wash

[38] Chamila Wijayarathna and Nalin AG Arachchilage. [n. d.]. Am I
Responsible for End-User’s Security? USENIX Association, Baltimore,
MD. https://wsiw2018.l3s.uni-hannover.de/

[39] Chamila Wijayarathna and Nalin A. G. Arachchilage. 2018. Why
Johnny Can’t Store Passwords Securely?: A Usability Evaluation of
Bouncycastle Password Hashing. In Proceedings of the 22Nd Inter-
national Conference on Evaluation and Assessment in Software Engi-
neering 2018 (EASE’18). ACM, New York, NY, USA, 205–210. https:
//doi.org/10.1145/3210459.3210483

[40] Aiko Yamashita and Leon Moonen. 2013. Do Developers Care about
Code Smells? An Exploratory Survey. In Reverse Engineering (WCRE),
2013 20th Working Conference on. IEEE, IEEE, 242–251.

[41] Aiko Yamashita and Leon Moonen. 2013. Surveying Developer Knowl-
edge and Interest in Code Smells through Online Freelance Market-
places. In User Evaluations for Software Engineering Researchers (USER),
2013 2nd International Workshop on. IEEE, IEEE, San Francisco, CA,
USA, 5–8.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 140 Page 12

https://doi.org/10.1145/3133956.3134082
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://doi.org/10.1145/3133956.3133977
https://doi.org/10.1145/3133956.3133977
https://doi.org/10.1109/TSE.2010.22
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/segreti
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/segreti
https://doi.org/10.1145/2556288.2557377
https://doi.org/10.1145/2891411
https://doi.org/10.1145/1837110.1837113
https://doi.org/10.5829/idosi.wasj.2013.27.02.889
https://www.usenix.org/conference/soups2014/proceedings/presentation/stobert
https://www.usenix.org/conference/soups2014/proceedings/presentation/stobert
https://doi.org/10.1145/2858036.2858546
http://www.ece.cmu.edu/~lbauer/papers/2012/login2012-passwords.pdf
http://www.ece.cmu.edu/~lbauer/papers/2012/login2012-passwords.pdf
https://www.usenix.org/conference/soups2015/proceedings/presentation/ur
https://www.usenix.org/conference/soups2015/proceedings/presentation/ur
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/wash
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/wash
https://wsiw2018.l3s.uni-hannover.de/
https://doi.org/10.1145/3210459.3210483
https://doi.org/10.1145/3210459.3210483

	Abstract
	1 Introduction
	2 Related Work
	Developer and Password Studies
	Developer Studies with Freelancers

	3 Limitations
	Ethics

	4 Methodology
	First Pilot Study
	Updated Study Design
	Final Study
	Scoring Code Security
	Quantitative Analysis
	Qualitative Analysis
	Participants

	5 Results of Freelancer Password Study
	Security
	Qualitative Analysis
	Phase One - Request
	Phase Two - Implementation
	Phase Three - Reflection

	6 Methodological Discussion
	Freelance vs. Student Sample
	Experience With Freelancer.com

	7 Conclusion
	8 Acknowledgments
	References

